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Abstract

In order to determine the effect of Eulerian spatial resolution on the two particle statistics of synthetic drifter
trajectories, we examine a hierarchy of ocean models, starting from 2D turbulence simulations, progressing
to idealized simulations of a buoyant coastal jet with ROMS, and finally to realistic HYCOM simulations of
the Gulf Stream. In each case, particle dispersion at large time and space scales is found to be controlled by
energetic meso-scale features of the flow that are relatively insensitive to the resolution of finer scale motions.
In all cases, time-distance graphs given in terms of computed Finite Scale Lyapunov Exponents show an
expected increase in the extent of exponential scaling with increasing spatial smoothing of the velocity field.
The limiting value of the FSLE at small separation distances is found to scale remarkably well with the
resolution of Eulerian velocity gradients as given by the average of positive Okubo-Weiss parameter values.
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1. Introduction

An ocean model’s ability to accurately predict the complex statistics of the relative dispersion of marked
particle pairs is of primary importance for a variety of practical purposes. The study of relative dispersion,
directly connected to parameterizations of turbulent mixing and scalar fluctuations, has been the focus of
intense modeling and theoretical efforts over the past century (see reviews Sawford (2001); Garrett (2006);
LaCasce (2008)).

As pointed out by Griffa et al. (2004), there continues to exist (and will continue to exist) a significant
gap between spatial and temporal scales resolved by even the highest resolution ocean model and the scales
effecting the motion of Lagrangian particles in the actual ocean. The nonlinear evolution of tracer trajectories
given by

dx

dt
= v(t) = u(x, t) , (1)

implies that particle-based Lagrangian measures depend upon the integrated effect of all spatial and temporal
scales of motion. An essential question is how well necessarily under-resolved ocean models capture the
physics of particle dispersion.

Such questions have become increasingly important for a number of reasons. Given recent advances
in hardware and algorithms and the increasing availability and assimilation of data sources, coastal and
basin scale ocean models are now routinely called upon to address detailed prediction of both passive and
active tracer components in realistic settings for biological and environmental purposes. In addition, a
number of studies have recently investigated the detailed geometry of mixing and transport in the ocean
using dynamical systems techniques that locate distinguished finite-time invariant flow boundaries in the
Lagrangian frame (Haller, 2001; Shadden et al., 2005). Whether based upon velocity fields derived from
quasi-geostrophic analysis of satellite surface data (Abraham and Bowen, 2002; Waugh et al., 2006; Beron-
Vera et al., 2008)), high-frequency radar signals (Lipphardt et al., 2006; Coulliette et al., 2007) or directly
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computed from models (d’Ovidio et al., 2004; Olascoaga et al., 2006; Haza et al., 2007a; Mancho et al.,
2008), deduction of so-called Lagrangian Coherent Structures, by any of the available methods, ultimately
requires accurate estimate of two-particle dispersion statistics. The sensitivity of such statistics to the
spatial resolution of the input velocity fields ultimately determines the robustness of the resulting transport
geometry.

The goal here is to directly investigate the relationship between Eulerian model resolution and the
resulting behavior of Lagrangian dispersion statistics. Our approach follows that of Iudicone et al. (2002);
Griffa et al. (2004); Bracco et al. (2004); Haza et al. (2008). We consider three distinct flow fields of increasing
complexity in which we have varying degrees of control over our ability to change the spatial resolution
of the model velocity. We begin with the standard case of statistically stationary and homogeneous two
dimensional turbulence and examine the effects of dynamically consistent smoothing on dispersion statistics.
This is done by first fully resolving all Fourier modes in the simulation and then considering advection by
velocity fields constructed from a smaller number of low wavenumber modes whose phases are determined
by the full simulation. We then relax the assumption of homogeneity by examining a baroclinically unstable
wall-bounded jet simulated using ROMS. In this case, we study changes in the resulting relative dispersion
statistics by directly varying the model spatial resolution for constant values of the input forcing. Finally,
we consider a fixed, high resolution HYCOM North Atlantic simulation and examine spatial resolution
effects by post-processing the model data with spatial filters of varying scale. In each case, we investigate
the relative dispersion using both standard statistics and doubling time (Finite Size Lyapunov) metrics to
highlight scale resolution dependence.

2. Relative dispersion

We consider the separation statistics of particle pair trajectories given by solutions of Eq. (1). Borrowing
standard notation from Babiano et al. (1990) and denoting the trajectory by x(a, t) where x(a, t0) = a, the
relative separation of a particle pair is given by

D(t,D0) = D0 + (x(a1, t) − x(a2, t)) = D0 +

∫ t

t0

δv(t,D0)dt
′ (2)

where the Lagrangian velocity difference is defined by

δv(t,D0) = (v(a1, t) − v(a2, t)) .

The statistical quantities of interest are the relative dispersion,

D2 = 〈D · D〉 (3)

and the relative diffusivity

K(t) =
1

2

dD2

dt
= 〈D(t,D0) · δv(t,D0)〉 (4)

where 〈·〉 is the average over all particle pairs. In terms of individual Lagrangian velocities, Eq. (4) is
equivalent to

K(t) = 2

∫ t

t0

〈v(a, t) · v(a, t′)〉adt′ − 2

∫ t

t0

〈v(a1, t) · v(a2, t
′)〉dt′ + 〈D0 · δv(t,D0)〉. (5)

The relative diffusivity is then the sum of three contributions. The first term on the right hand side of Eq. (5)
is simply twice the absolute diffusivity of individual trajectories given by the single particle Lagrangian
velocity auto-correlation, 〈·〉a denotes averaging over single particles, not particle pairs. The second term is
the cross-correlation of pair velocities. The third term, the correlation between initial pair separation and
velocity differences, vanishes in the case of statistically homogeneous flows for randomly distributed particle
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pairs. In inhomogeneous flows, this correlation is expected to decay in time as particles lose memory of their
initial state.

The asymptotic behavior of the relative dispersion for small and large times is well established (Batchelor,
1952; Babiano et al., 1990; LaCasce, 2008). For very short times, the velocity difference of particles that are
initially close is approximately constant and D2(t) ∼ t2 while K(t) grows linearly in time. For large times
(large separation distances), both the second and third terms in Eq. (5) decay to zero as the velocities along
each trajectory become uncorrelated. For flows with finite Lagrangian time scales, K(t) is constant in the
long time limit and the asymptotic growth of D2(t) is linear. Similarly, for vanishingly small separations in
suitably smooth flow fields, first order expansion implies that

dD

dt
∼ ∇u ·D

with ∇u independent of separation distance. In this scale-independent regime, D ∼ eαt.
At intermediate time and separation scales where two point velocity statistics are correlated, the question

of the behavior of the relative dispersion is less clear, especially in geophysical flows where the effects of
rotation and stratification typically lead to the formation of energetic coherent vortex structures. For
statistically homogeneous flows, Richardson’s theory Richardson (1926), D2 ∼ t3, is often observed and is
consistent with both the Kolmogorov-Kraichnan inverse energy cascade in 2D turbulence (Batchelor, 1952)
and the saturation of two-point Lagrangian-acceleration correlations (Babiano et al., 1990; Castilla et al.,
2007). However, the presence of long-lived coherent vortices, as shown by Ehlmaidi et al. (1993), leads
to so-called anomalous dispersion regimes with super-diffusive scaling due to preferential sampling of the
hyperbolic regimes on the periphery of vortex cores.

Much of our understanding of numerical and observational investigations of relative dispersion statistics
in the ocean derives from the limiting case of 2D, homogeneous, isotropic turbulence. The dynamics of
2-D homogeneous turbulence forced at a single scale are well established and consist of two distinct cascade
regimes determined by the forcing wavenumber kf . A direct cascade of enstrophy to smaller scales exists
for scales smaller than k−1

f and an inverse energy cascade to larger scales for scales larger than k−1
f . The

enstrophy cascade is typically associated with a steep, nonlocal, slope of the energy spectrum E(k) ∼ k−3

while Kolmogorov-Kraichnan inertial range arguments in the inverse cascade range imply E(k) ∼ k−5/3.
The implications of the dual cascade on the relative dispersion of particle pairs are also well known.

Following Bennett (1984) (see also Castilla et al. (2007); LaCasce (2008)), for a homogeneous and sta-
tistically stationary 2-D turbulence, the Lagrangian velocity difference responsible for particle pair sep-
aration as given in Eq. (2) is equivalent to the second-order Eulerian structure function, 〈δv2(D)〉 =

(u(x+ D, t) − u(x, t))
2

= S(D) . Dimensional arguments can then be used to relate the scaling of the
relative dispersion to the local slope of the energy spectrum of the underlying Eulerian velocity field, E(k).
Given the assumption

K(D) = 〈D · δv〉 ∼ S1/2D

and the relationship

S(D) = 2

∫

∞

0

E(k) (1 − J0(kD)) dk ,

standard asymptotics show that for Eulerian spectra with power law dependence, E(k) ∼ k−β,

S(D) ∼ Dβ−1, K(D) ∼ Dβ+1)/2, D ∼ t2/(3−β), 1 < β < 3

S(D) ∼ D2, K(D) ∼ D2, D ∼ eαt, β > 3 . (6)

The limiting value, β = 3, separates regimes of local dispersion for β < 3 where pair separations are
dominated by motions at the local separation scale from the nonlocal regime β > 3 where separation statistics
are determined by the dynamics at scales larger than the local separation. Thus, for 2-D turbulence in the
enstrophy cascade range one expects exponential behavior of the relative dispersion while Eq. (6) predicts
Richardson scaling in the inverse cascade regime if β = 5/3.
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3. 2D Turbulence

As a first example, we consider particle evolution under the action of velocity fields produced by direct
numerical solutions of the 2-D vorticity equation

∂ω

∂t
+ J(ψ, ω) = F (ω) +D(ω)

ω = ∇2ψ (7)

where J(·, ·) is the two-dimensional Jacobian operator and F and D are forcing and dissipation operators
chosen to produce statistically steady vorticity distributions. The forcing term, F (ω; kf ) is constructed to
insure that the energy in the spectral solution at wavenumber kf = ||kf || is kept constant while the phases
of the modes at this wavenumber evolve freely under the dynamics. Energy dissipation, D, is the sum of an
eighth-order hyperviscocity at small scales and a linear drag at the largest scales,

D(ω) = νh(∇2)8ω − αψ. (8)

Solutions are computed by a standard spectral solver in a periodic domain of size 2π × 2π. In all cases,
particle trajectories are computed alongside the Eulerian fields using a spectral spline interpolation scheme
in space and a second order Adams-Bashforth scheme in time.
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Figure 1: (a) Kinetic energy spectrum for the kf = 70 simulation. The solid line indicates -5/3 slope. (b) The fraction of
energy and enstrophy resolved as a function of smoothing wavenumber kc. Vertical lines indicate resolved fractions at kc = 8,
16, and 32.

For this study we concentrate on a simulation of Eq. (7) forced at k = 70 with a moderate resolution
of 5122 modes. Specific parameters in the model are given in Table 1. Fig. 1 shows the resulting energy
spectrum averaged over τ = t(ω2)1/2 ∼ 1000 eddy turnover times. Throughout, the energy in the simulation
varied by ∼ 1.5% around about an average of 121 while the enstrophy remained within ∼ 4% of ω2 = 28800.
The simulation produces a distinct inverse cascade regime at scales ∼ 10 < k < kf/2 followed by a much
narrower direct cascade at wavenumbers > kf . Also shown in the figure are the cumulative distributions
of both energy and enstrophy in the simulation as a function of wavenumber. As expected, the energy
is narrowly concentrated at large scales while the enstrophy fraction asymptotes much more slowly. For
reference, the first 32 wave-numbers capture more than 80% of the total energy but less than 25% of the
total enstrophy.

To determine the effect of spatial resolution on Lagrangian dispersion statistics, we consider the following
spatial smoothing of the fully resolved Eulerian velocity field. For a given ψ(k, t) produced by the full
simulation of Eq. (7), we define an infinitely steep spectral truncation operator

ψ̂(k, t) =

{

ψ(k, t) if |k| ≤ kc

0 if |k| > kc,
(9)
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N kf νh α Energy ω2

512 70 2.5 × 10−31 2.0 121 28800

Table 1: Parameters for numerical simulation.

and then examine, as a function of kc, statistics of Lagrangian trajectories advected by the truncated velocity
field

dx(t; kc)

dt
= −∂ψ̂

∂y
,

dy(t; kc)

dt
=
∂ψ̂

∂x
.

Since the time dependence of the spatially smooth field, ψ̂(k, t), is inherited directly from the full solution,
the resulting advection fields are dynamically consistent and identical with ψ(k, t) at spatial scales larger
than 2π/kc. Snapshots of the resulting stream function field with kf = 70 for various values of kc are shown
in Fig. 2.

Figure 2: Snapshots of the stream function field for different values of cutoff wavenumber. Top row, kc = 512 and kc = 32.
Bottom row, kc = 16 and kc = 8.

Fig. 3 shows the behavior of the relative dispersion statistic as a function of eddy turnover time for
different choices of spectral truncation. Results were obtained by considering nearest neighbor pairs of
40,000 trajectories initialized on a regular grid with initial separation of 2π/512 corresponding to δ0 = 1.0
in the grid-based units shown in all computations and plots. The results are consistent with theory. At
large scales, diffusive D2 ∼ t behavior is observed for all values of the smoothing parameter and the overall
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magnitude of D2 is nearly insensitive to the resolution of smaller scale motions. This is true even in the
case kc = 16 where the truncated field only accounts for 60% of the total flow energy. As such, for times
corresponding to mean separations at scales below 2π/kc the relative dispersion grows very slowly and, as
shown below via doubling time statistics, spatial smoothing corresponds to extending the range of scales
over which an exponential separation regime exists. Given the form of the smoothing operator, smooth fields
posses infinitely steep spectra for scales k > kc and thus the scale at which the dispersion changes from local
to nonlocal (exponential in time) behavior is set directly by the truncation wavenumber kc for all kc < kf .

The effect of increasing the role played by large scale structures by spectral truncation is evident in
the inset to Fig. 3a which shows Richardson scaling, D2/t3, of the computed relative dispersion curves.
As indicated by Babiano et al. (1990), experimental observation of Richardson scaling is expected only
for particle pairs whose initial separation scale, D0, is well below that of the inertial subrange, Di. With
D0/Di = 0.14 here, only a very modest regime of Richardson scaling is observed in the full simulation for
times τ ∼ 20− 30. For all other times the growth of the relative dispersion for advection under the full field
is slower than t3. The dispersion in the smoothed fields, however, asymptotes at large times to that of the
full field but initially grows much more slowly due to the complete absence of small scale motions. As such,
the rate at which relative dispersion grows at intermediate scales is seen to be significantly greater than the
Richardson prediction in the spectrally smoothed fields.
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Figure 3: (a) Relative dispersion for full simulation and three values of the cut-off wavenumber. The solid line indicates the
diffusive, D2 ∼ t, behavior. Time scaled by eddy-turnover time of the full simulation. Inset shows Richardson scaling, D2/t3.
(b) Relative dispersion for various smoothing. Time scaled by the root mean square of resolved enstrophy for each value of kc.

The behavior of the relative dispersion for short times is further investigated in Fig. 3b. In the ocean
modeling context where there is no access to the full solution, it is natural to scale time with available
estimates of the eddy-turnover time as computed by the model. Given the cumulative fraction of enstrophy
as a function of wavenumber as shown in Fig. 1b, this is easily done in the context of the spectral truncation.
As shown in Fig. 3b, rescaling with the resolved enstrophy (equivalent to the resolved rate of strain for the
case of homogeneous 2D turbulence) produces very good collapse of the relative dispersion data across
smoothing parameters for small times and small separations. At larger scales, however, this local scaling
indicates increased dispersion at intermediate and long scaled times for flows lacking small scale structure.
In other words, the absence of small scale structure in the flow leads to larger values of relative diffusivity
measured with respect to the magnitude of the resolved velocity gradients.

The computed relative dispersion clearly shows the insensitivity of the magnitude of the eddy-diffusivity

in the diffusive regime to the presence or absence of small scale motions. Direct calculation of K(t) = 1
2

dD2

dt
from the data confirms that this quantity is identical, within sampling error, for all truncations despite large
differences in the resolved kinetic energy (E(kc = 8) ∼ .3E(kc = 512)). Computation of the Lagrangian
kinetic energy and velocity auto-correlation time indicate that the particle auto-correlation times grow with
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Figure 4: (a) Finite size Lyapunov exponent, λ as a function of separation distance δ for full and smoothed simulations. (b)

Same as (a) after scaling λ with the resolved enstrophy time scale, (ω2)1/2, in each flow.

increasing spatial smoothing in such a way to exactly compensate for the decrease in Lagrangian kinetic
energy.

To distinguish the scale dependence of the relative dispersion at small times we calculate the Finite-
Size-Lyapunov Exponent (FSLE) originally proposed by Aurell et al. (1997); Artale et al. (1997) and used
extensively since then investigations of 2D turbulence. Instead of averaging over all separation distances at
a given time as is done in the calculation of D2(t), the FSLE seeks to compute the average time particle
pairs take to separate from a given scale δ to a scale αδ where α > 1 is a parameter. Results for α = 2
correspond to average doubling times. The FSLE is defined as the inverse time scale

λ(δ) =
ln (α)

〈τ(δ)〉 (10)

where 〈τ(δ)〉 is the average time over all particle pairs having separated from δ to αδ. Specifically, we
compute the relative dispersion of 2 × 199 × 200 nearest neighbor initial particle pairs and, for each pair,
determine the average time to separate a given distance over all occurances of this separation. These per
particle pair mean times are then averaged over all pairs to determine λ(δ).

Given the goal of examining the scale dependence of the relative dispersion as a function of spatial
velocity resolution, we have chosen the smallest value of α possible in order to observe the scale dependence
of dispersion statistics at the finest allowable resolution. As explained in Haza et al. (2008), temporal
resolution of trajectory data and statistical considerations place a lower bound on the value of α. Specifically,
the parameter must not be chosen so small that pair separations occur at times smaller than the time
increment of the available data. Given these considerations, in order to resolve the small scale exponential
regime with as many distinct separations values as possible we have chosen α = 1.2. This parameter choice
is consistent with Rivera and Ecke (2005) and slightly smaller than typical values (α =

√
2) in Aurell et al.

(1997); Lacorata et al. (2001); LaCasce and Ohlmann (2003)). Tests with α = 1.4 and α = 1.7 show that
the results (at scales resolved by the choice of α) are insensitive to this parameter.

Results for the 2D turbulence simulations are shown in Fig. 4 where variations in the extent of the
observed exponential (λ(δ) = λ0 = C) regime with increasing levels of spatial smoothing are clearly seen.
Again, at scales larger than 2π/kc, the FSLE shows very little sensitivity to spatial smoothing and is identical
within statistical error for values of the truncation wavenumber greater than 16. In these cases, average
separation times at intermediate separation scales are independent of the presence or absence of smaller
scale motions. As seen in Fig. 4a, any indication of Richardson regime, λ ∼ δ−2/3 is lost in the smoothed
fields which show an abrupt transition from exponential to diffusive scaling.
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The extent of the exponential regime agrees well with both spectral theory, which predicts constant λ
for δ/2π < 1/kNL = max(1/kc, 1/kf) and simple ideas of Lagrangian chaos for smooth Eulerian velocity
fields. Inspection of Fig. 4a shows, at least for inter-comparison of the three smoothed fields, that the range
of the exponential regime scales well with 1/kc. As shown in Fig. 4, the magnitude of the limiting constant
value of λ scales with the average resolved rate of strain as measured by the local enstrophy in agreement
with experimental observations of Rivera and Ecke (2005)

Figure 5: Direct Lyapunov exponent fields showing the effect of spatial smoothing in the Lagrangian frame. The finite time
corresponds to approximately 10 eddy-turnover times in each field. Top row, kc = 512 and kc = 32. Bottom row, kc = 16 and
kc = 8. The color scale is identical in each figure.

The behavior of both raw relative dispersion statistics and FSLE distributions under the action of spatial
filtering point to the dominant role played by meso-scale structures in determining the rate of particle pair
separation at all but the smallest scales. The insensitivity of dispersion measures to the details of the small-
scale velocity field has been noted previously (Bracco et al., 2004; Griffa et al., 2004; Haza et al., 2008)
and is consistent with the long-held paradigm that large scale structures are responsible for the majority of
turbulent mixing.

To investigate the kinematics which allow the seemingly different flow fields shown in Fig. 2 to produce
nearly identical large scale dispersion statistics, we compare the geometry of the underlying Lagrangian
structures for different spatial smoothings. A number of techniques have been proposed for elucidating
the transport geometry in the Lagrangian frame for aperiodic flows (Poje et al., 1999; Haller and Yuan,
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2000; Haller, 2001; Shadden et al., 2005). Here we employ the Direct Lyapunov Exponent (DLE) approach
proposed by Haller and used in the context of coastal ocean flows by Lekien et al. (2005).

Given particle trajectories defined by x(t,x0), the direct Lyapunov exponent σ(x0, t0) is defined as the
maximal eigenvalue of the symmetric form of the spatial gradients of x. Define λmax as the largest eigenvalue
of

G =

[

∂x(t,x0)

∂x0

]T [

∂x(t,x0)

∂x0

]

,

the DLE is then

σ(x0, t0; t) =
ln (λmax)

2 ∗ (t− t0)
. (11)

Figure 5 shows maps of the DLE fields computed for trajectories advected under the full and truncated
spectral dynamics. The color scale is identical for all frames. In each, x(0, t) is computed on a uniform
grid of 2002 initial conditions and spatial gradients of this flow map are approximated by second order finite
differences of trajectory pairs. The DLE is parameterized by the finite time, t− t0. Here we have taken this
time to correspond to approximately 10 eddy-turnover times as measured by the resolved enstrophy in each
truncation. For the particular initialization and subsection of the flow field, the controlling role of a single,
large scale vortex dipole pair is made evident as the level of truncation increases up to kc = 16. Severe
truncation at kc = 8 completely eliminates the dominant meso-scale structure.

4. Buoyant Coastal Jet

While the results obtained in the context of idealized 2D flows are useful to develop a better understanding
of the resolution dependence of relative dispersion, it is not clear whether these results are specific to
this configuration, or carry generality for oceanic flows. In particular, it is desirable to make progress in
addressing the following questions: (1) The 2D approach discussed above ensures total homogeneity of the
flow field through the boundary conditions and forcing employed. How do relative dispersion characteristics
change in more realistic simulations, namely those in which the coherent structures are generated by the
instabilities of large-scale features such as coastal and open-ocean jets? (2) Do the main results obtained on
the basis of homogeneous fluids change in stratified flows, in which the density is an active tracer in the flow
field? (3) While advecting the Lagrangian particles with a reduced number of modes of the same turbulent
simulation allows us to identify exactly the effect of small scale turbulent structures on relative dispersion,
this is not the traditional practice in ocean modeling. Instead, the typical approach is to increase the spatial
resolution of the Eulerian simulation while simultaneously reducing the imposed turbulent viscosity. This,
in turn, allows simulation of higher wave number features. How do relative dispersion characteristics vary
with this common approach?

To address these questions, we generate a complex flow field using a standard community coastal
ocean model. The evolution of an idealized baroclinically-unstable current is simulated using the Regional
Ocean Modeling System (ROMS). The main concept of these simulations is to configure the model in a
geometrically-simple basin, but in a way to generate complex dynamics involving flow instability. These
simulations are instructive to understand the behavior of buoyant coastal currents, such as the Western
Adriatic Current along the Italian coast Cushman-Roisin and Korotenko (2007); Book et al. (2007); Haza
et al. (2007a); Bignami et al. (2007).

4.1. Model configuration

ROMS is a free-surface terrain-following hydrostatic ocean model (Shchepetkin and McWilliams, 2005).
ROMS is chosen for three main reasons. First, ROMS is a well-proven model with very good numerics
and it is widely used for many coastal applications, so that any results obtained here will have implications
for a wider community. Second, ROMS incorporates the convenient feature of implicit viscosity such that
the effective Reynolds number at that grid resolution takes the largest value possible while still ensuring
stability. The implicit viscosity is built into a third-order, upstream-biased advection operator (Shchepetkin
and McWilliams, 1998). In this way, ad-hoc setting of explicit diffusivity for each spatial resolution is

9



prevented. Instead, the implicit diffusivity adjusts to the spatial resolution to insure numerical stability.
Furthermore, we take advantage of ROMS’ feature of being able to deploy on-line synthetic floats so that
temporal disctretization errors that can result from off-line deployments are eliminated.

In all simulations, the domain is 580 km long and 258 km wide. The southern, eastern and western
sides are open, while a no slip condition is applied to the northern closed boundary. The bottom is flat
(H = 150 m) and the vertical dimension is discretized by 20 sigma layers. Since the focus is on surface
instabilities, the sigma layers are unevenly spaced in the vertical and gathered at the top of the water
column. The experiment consists of a set of five numerical simulations which differ only in their horizontal
resolution. The resolutions considered are ∆x = 8 km, 4 km, 2 km, 1 km, and 0.5 km. The baroclinic
time-step is held constant at ∆t = 300 sec except for the 0.5 km grid where it is decreased to ∆t = 240 sec.
All simulations are run with the ROMS default generic length scale algorithm (Umlauf et al., 2003) which
defines a k − ε turbulence closure with Canuto-A stability functions (Canuto et al., 2001). Four of the five
cases, namely ∆x = 8 km, 4 km, 2 km, and 1 km, start from rest. The only forcing is through boundary
conditions. The initial salinity and temperature fields vary only with depth according to simple hyperbolic
tangent profiles. The surface and bottom initial values are respectively Ssrf = 38.1, T srf = 23.25◦C and
Sbot = 38.45, T bot = 13.0◦C. At the eastern side (inflow boundary), in an area 12 km wide, the tracers are
relaxed to fresher and warmer values to simulate the inflow of riverine waters. Near the coast, the salinity
and temperature are assigned to the values of Ssrf

min = 37.2 and T srf
max = 25.0◦C in an area 8 km wide. Moving

offshore they gradually match back the initial values. This change follows an exponential behavior with a
length scale of 12 km. For brevity, the exact definitions of the initial and boundary profiles are given in the
appendix.

If we assume the velocity at the bottom to be zero, the thermal wind equation can be used to calculate
the inflow velocity profile from the density field as

u
E
(y, z) =

∫ z

−H

∂ u

∂z
dz =

g

fρo

∫ z

−H

∂ ρ

∂y
dz , (12)

where ρo is the average density value in the domain, g the gravitational acceleration and f the Coriolis
parameter. The barotropic inflow boundary values for the velocity and the sea surface elevation can be then
calculated respectively by vertically averaging equation (12) and using geostrophy, i.e.

U
E
(y) =

1

H

∫ 0

−H

u
E
(y, z)dz , (13)

η
E
(y) = η

S
− f

g

∫ y

0

U
E
(y)dy , (14)

where η
S

= 0 m is the sea surface elevation along the southern boundary.
The values η

E
and U

E
are used at the eastern boundary to specify the incoming characteristic via a

Flather condition. The same Flather condition is used at south with η
S

= 0 m and U
S

= 0 m sec−1,
while a zero gradient condition is applied on the western boundary for the barotropic velocities. Radiation
conditions are applied at the western boundary for the sea surface elevation, and at all open boundaries for
the baroclinic velocities. Furthermore, at the western and southern boundaries the tracers are relaxed back
to their initial values in two areas that are 48 and 12 km wide, respectively. At the western boundary, the
mesh size is also increased to provide a natural sponge layer and to reduce reflection in the domain.

The simulations with 8 km and 4 km grids run for 583 days while the others are terminated at 347 days
from rest. The 0.5 km simulation shares the same setup for the boundary conditions. However, in order
to save computational time, it uses as initial conditions the fields calculated by the 2 km simulation at 208
days and 8 hours. From this point it is integrated in time until the end of the simulation is reached.

4.2. Results

In these simulations, the coastal jet is best characterized by its salinity signature, which serves well
to visualize the flow field. The eddy-permitting resolution requirement is estimated on the basis of the
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Figure 6: Snapshots of the salinity fields with increasing spatial resolution, (a)∆x = 8 km, (b)∆x = 4 km, (c)∆x = 2 km and
(d)∆x = 0.5 km. The “+” signs in (a) mark the launch locations of the synthetic floats.
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radius of deformation. Using a typical salinity of S = 37.2 and temperature of T = 25◦C for the coastal
current, and S = 38.1, T = 23.25◦ for the ambient water, and a linear equation of state with a contraction
coefficient of 6.6×10−4 for salinity, and expansion coefficient of 1.7×10−4C−1 for temperature, the reduced
gravity becomes g′ = 9.6 × 10−3m2s−1. Also taking h = 25m for the buoyant current depth scale, and
f ≈ 9.85 × 10−5 s−1 in the domain, the radius of deformation is estimated as Rd ≈ 5 km. A resolution of
at least ∆x = 8 km is required not only to permit meso-scale eddies, but also to capture the width of the
buoyant current of 12 km at the inflow (right) boundary. The snapshots of the salinity field obtained from
different spatial resolutions show that the largest eddies are captured adequately regarding their size and
phase (Fig. 6). As the spatial resolution is increased, secondary instabilities and more modes of turbulent
interactions are captured.

It is of interest to explore the kinetic energy spectrum, as this case is in between the two limiting cases of
2D and 3D turbulence. In purely 2D turbulence, the energy is transferred from small to large scales, while
enstrophy is transferred from large to small scales. The injection of energy at a very specific wavenumber,
as in section 3 (Fig. 1a) therefore creates a spectrum with a dual range, E(k) ∼ k−5/3 for k < kf and
a spectrum with a steeper slope for k > kf . The up-scale transfer of energy in 2D requires a large-scale
dissipation mechanism, as done in (8). On the other hand, the energy transfer of 3D homogeneous turbulence
is down-scale (Kolmogorov, 1941). Regarding relative dispersion, exponential growth occurs when the wave
number spectrum is steeper than k−3, regardless of the dynamics which set this slope (Bennett, 1984).

10
−6

10
−5

10
−4

10
−3

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

k  (m−1)

E
(k

)

k−3

k−5/3

Figure 7: Kinetic energy wave number spectra from the five different resolutions (8 km red, 4 km yellow, 2 km green, 1 km
blue and 0.5 km black) of ROMS simulations. Black lines indicate slopes of k−5/3 and k−3.

Kinetic energy wave number spectra for the ROMS simulations are estimated on the basis on 20 sections
taken over the area marked in Fig. 6a, which corresponds to the region where the synthetic drifter arrays
are launched. The kinetic energy spectra plotted for the five resolutions (Fig. 7) indicate the following.
The highest resolution case with ∆x = 0.5 km does not show a significant peak at any particular wave
number, and two distinct regime as in the forced 2D case (Fig. 1a), but a gradual transition. The regime
between (80 km)−1 ≤ k ≤ (10 km)−1 (consistent with the sizes of large eddies seen in Fig. 6d) has a slope
of approximately k−5/3. In the regime of k > (9 km)−1, the slope becomes steeper. When the spatial
resolution is reduced, several changes can be observed. First, and most obviously, the higher wave numbers
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are gradually truncated. In the 8 km and 4 km cases, the steeper part of the spectrum is not captured, and
only the largest eddies are resolved. Second, there is a significant drop (more than a factor of 10 between
8 km and 0.5 km cases) in the overall kinetic energy. In this particular system, baroclinic instabilities
act to convert the potential energy stored in the buoyant coastal plume into kinetic energy. Part of this
kinetic energy is used for mixing and stored irreversibly as the background potential energy, and part of it
is dissipated. In this coastal buoyant plume problem, turbulent instabilities are highly active, and higher
resolution cases seem to extract more kinetic energy from the fields, while in coarse resolution cases, implicit
subgrid-scale closures provide a direct pathway to mixing and dissipation without explicit turbulence. Ideally,
the subgrid-scale closures should be such that the identical results from higher-resolution simulations are
reproduced at coarse resolutions. In practice, however, this is usually not the case. So, overall, we conclude
that these particular sets of simulations not only have similarities with the 2D flows presented above, but
also show significant differences to justify the exploration of the relative dispersion statistics.

A total of 1125 synthetic floats are released in these computations after each simulation has adjusted to
its own internal dynamics and developed its own turbulent flow features. The initial locations are chosen to
be upstream of the flow field and away from the boundaries Fig. 6a. In an area that is 300 km long and 100
km wide, floats are deployed every 12.5 km and each float is surrounded by four others placed 500 m apart
in each cardinal direction to form a cross. The floats are deployed at the surface and they are kept at their
initial depth for the whole duration. The number of floats and their initial positions are identical for all
the simulations. The floats trajectories are calculated on-line and their positions are saved with a sampling
period of one hour.

The relative dispersion is computed for all cases and plotted as a function of time in Fig. 8a. D2(t)
is larger for finer resolutions at any given time. All experiments display an exponential regime followed
by a slightly slower than Richardson power-law (D2(t) ∼ t2.7 for the 0.5 km run). In analogy to the 2-D
turbulence results, the exponential regime persists for longer times for decreasing resolution. Unlike the
purely 2-D flow, however, there does not appear to be a significant change in the slope of the dispersion
curve for different resolutions at intermediate times. Beyond two months, the trend towards a diffusive
regime becomes apparent in all but the coarsest resolution.

In all simulations, the presence of an open down-stream boundary through which particles are lost limits
the total amount of time over which reliable dispersion statistics can be computed limiting full exploration
of the diffusive dispersion regime.

As in the 2D turbulence case, it is desirable to explore whether a resolution-dependent Eulerian quantity
sets the maximum exponential relative dispersion at the small scales and the local dispersion time-scale. In
inhomogeneous flows, the enstrophy and rate of strain need not be equal. A useful quantity commonly used
to characterize the topology of turbulent flows is the Okubo-Weiss criterion (Okubo, 1970; Weiss, 1991)

Q = S2 − ω2 . (15)

Here

S2 = S2
n + S2

s , Sn =
∂u

∂x
− ∂v

∂y
, Ss =

∂v

∂x
+
∂u

∂y
, (16)

where Sn and Ss are the normal and shear components of strain.
Comparison of the Okubo-Weiss parameter computed for the flow fields depicted in Fig. 6 is shown in

Fig. 9. The regions dominated by rotation (centers of eddies) are characterized by Q < 0, while those
dominated by strain and deformation (hyperbolic regions in between the eddies) are those where Q > 0.
Regions with Q < 0 correspond to no or little relative dispersion, while those with Q > 0 are associated with
the exponential divergence of particles. Obviously, Q estimated from frozen fields provides no indications
of the time-dependent nature of particle dispersion. Nevertheless, it is clear from Fig. 9 that as the model
resolution is increased, hyperbolicity of the model fields increases as well. Since the relative dispersion at
small scales is particularly sensitive to the stretching rate, it is sensible to explore whether a measure of
regions with Q > 0 can account for the overall change in the dispersion times with model resolution.

Fig. 8b shows the relative dispersion as a function of scaled time. For each resolution we define an inverse
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Figure 8: (a) Relative dispersion versus time, D2(t), computed from the five different resolutions of ROMS simulations. (b)
Relative dispersion versus rescaled time for the five different resolutions. In each case, time is nondimesionalized by the
hyperbolicity time provided by the root of spatially averaged, positive Okubo-Weiss parameter.

time scale, Q, by averaging over all positive (hyperbolic) values of the Okubo-Weiss partition,

Q = A−1

∫

QdA, Q > 0.

As shown in the figure, the relative dispersion in scaled time, D2(Qt), shows relatively good collapse across
the five spatial resolutions. In agreement with the homogeneous turbulence results, rescaling time with a
measure of resolved velocity gradients produces larger relative dispersion in the diffusive regime for coarser
resolutions.

The scale dependence of the relative dispersion measured by the FSLE metric is investigated next.
The FSLE is based on an averaged time over an ensemble of particle-pairs required to separate from the
distances δ to αδ. There are two non-trivial aspects related to the actual implementation of this definition
that deserve some discussion as these details can lead to significant differences in the results. The most
common technique in the literature is the first-crossing method, which computes the time elapsed between
the first time a particle pair’s separation reaches δ and the following crossing to αδ. Especially in the
presence of coherent meso-scale structures, however, there is no guarantee that the separation distance for
a given particle pair should increase monotonically with time. For separation distances of the same order as
the scales of the energetic structures, the first crossing time between given separations may not be indicative
of the average time required for this pair to separate that distance. An alternate approach to pick the last
instance a particle pair reaches the distance δ before reaching the distance α×δ. This fastest-crossing method

gives an averaged time always shorter than the first crossing method and therefore higher corresponding
FSLE values. The advantage of the method is that it provides a uniform conditional statement across all
pairs and is thus expected to produce more robust statistics. Both methods may yield different FSLE values
and, for a finite number of realizations, different power law regimes.

The second issue in the FSLE computation is the particle pair sampling strategy. In light of the limited
number of drifters available in oceanic observations. While it is common to rely on chance pairs in order
to compute FSLE statistics from limited numbers of observations (LaCasce and Ohlmann, 2003), no such
constraints apply to modeling studies. Although Morel and Larcheve (1974) report no statistical difference
between chance and original pairs in the relatively homogenous atmospheric context, there is evidence that
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chance pairs introduce a bias in the FSLE computation by preferentially sampling convergence zones in the
flow field possibly obscuring the exponential regimes at small scales (e.g., Fig. 4b in Haza et al. (2008)).
On the other hand, original pairs can introduce a bias toward an overestimation of the FSLE at larger scales
because only pairs in the fastest dispersing regions are preferentially included in the sample given the finite
time of the simulation. The difference between the results from original and chance pairs increases when the
the flow field is not homogeneous, namely when it includes fast boundary currents next to slow gyres typical
in oceanic flows. As such, the use of original pairs at small scales and chance pairs at large scales leads to
an optimum sampling to ensure a homogeneous sampling and more reliable statistics of the flow field.

Here we present FSLE λ(δ) results from both original and chance pairs, and also first-crossing and fastest-
crossing methods (Fig. 10). Results on the basis of the first-crossing method (Fig. 10a) are qualitatively
similar to those obtained from the idealized 2D setting in that they show distinct plateau at small scales
with the maximum value of λ increasing with spatial resolution. As expected, the fastest crossing method
provides a more robust estimate of λ at the smallest scales.

The extent of the exponential regime shows dependence on the spatial resolution and extends to larger
scales as the resolution decreases. In the highest resolution case, the plateau (seen most clearly Fig. 10a)
exists to about 10 km ≤ δ ≤ 20 km, which is the size of the smallest meso-scale eddies, or 2 to 4 times the
radius of deformation. In contrast, for ∆x = 8km λ(δ) is approximately constant for separations less than
60 km.

At larger scales than this, the FSLE shows little sensitivity to the smaller scale motions. At scales
δ > 10 km, original pairs lead to a faster relative dispersion regime, as discussed above (close to Richardson,
δ−2/3 Richardson) than chance pairs (close to ballistic, δ−1). Note that this regime does not entirely coincide
with the power-law of D2(t), which is closer to the Richardson regime. When the fastest-crossing method
is used (Fig. 10b), the FSLE values are consistently larger (about 5 fold) than those from the first-crossing
method.

The FSLE scaled with Q = A−1
∫

QdA for Q > 0, λ/Q, is plotted in Fig. 11 for both first and fastest
crossing estimations. In both cases, the curves collapse considerably. This rescaling is more successful with
the first-crossing method and reasonable with the fast-crossing method.

5. The Gulf Stream

5.1. Model configuration

The North Atlantic numerical simulation with the Hybrid Coordinate Ocean Model (HYCOM) uses
1/12◦ horizontal spacing (Mercator grid merged with bipolar at high latitudes), and 32 vertical layers in
sigma2 coordinates (Bleck, 2002; Chassignet et al., 2003; Halliwell, 2004)

The domain extends from 28◦S to a curvilinear boundary reaching 80◦N. Temperature and salinity
fields are relaxed to PHC3.0 climatology in buffer zones near the northern and southern boundaries. The
model is forced with ERA40 (1978-2002) monthly climatological forcing. The thermal forcing includes heat
flux calculated from bulk formulae for radiation, air temperature, specific humidity, wind speed and model
sea surface temperature, and precipitation. In addition, surface salinity is relaxed to climatology. The
ERA40 wind stress data were corrected through a correlation with satellite winds, and 6-hourly repeat-year
anomalies corresponding to those from 2003 were added. The output analyzed here corresponds to year 5
of the spin-up after initialization from GDEM climatology.

In order to simulate the Gulf Stream realistically, one of the important prerequisites is to correctly
represent the separation from the coast. While separation of the Gulf Stream from Cape Hatteras poses
a challenge for many coarse-resolution models (Dengg, 1997; Özgökmen et al., 1997) OGCMs with 1/10◦-
1/12◦ resolution typically capture this behavior quite realistically (Paiva et al., 1999; Smith et al., 2000;
Chassignet and Garraffo, 2001) Due to the complexity and high temporal and spatial sampling, the output
from such OGCMs take a significant amount of time to study. In investigations conducted on the output of
MICOM (Miami Isopycnal Coordinate Model, preceding HYCOM and relatively more extensively studied,
e.g. Garraffo et al. (2001b); Veneziani et al. (2005)) the Gulf Stream separation is found to be realistic, and
the meso-scale activity in the Gulf Stream region seem to be well represented. Synthetic drifters in regions
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of strong fronts were found to sample velocities that differ from the Eulerian velocities due to convergence
effects (Garraffo et al., 2001a). The 3D structure of the confluence region between the Gulf Stream and the
Deep Western Current has been studied on the basis of MICOM output by Haza et al. (2007b) and is found
to be in good agreement with the observations. One of the main differences between the present HYCOM
simulation and those from MICOM is that HYCOM relies more on resolution than parameterization of the
oceanic mixed layer flow, because of the six z-coordinate layers in the upper few hundred meters. There
seems to be no major difference between HYCOM and MICOM in the region of interest, and since MICOM
is not supported anymore, we work with HYCOM fields here. These simulations appear to capture well
most of the known boundary layer and meso-scale dynamics in this region, while representing the output
from fully realistically forced and configured OGCM. Therefore, this model provides an ideal setting for
calculating relative dispersion statistics in realistic open ocean flows.

A set of 14,615 particles are launched between Cape Hatteras and the Grand Banks. A set of five
particles, 1 km apart from the central one are released every three grid-points. This corresponds to more
than 10,000 original pairs available for computing relative dispersion metrics. A fourth-order Runge-Kutta
scheme is used to solve the Lagrangian equations with an integration time-step of ∆t = 2 h, and a third-
order polynomial scheme for spatial interpolation. The total duration of the advection is 4 months, allowing
enough particle pairs to cover distances of about 2000 km (Fig. 12).

There are several differences here with respect to the previous cases, and all concern the computational
overhead of this realistic model.

The first difference from the previous sections concerns the representation of the degrees of freedom
influencing the two-particle statistics. As discussed above, a coarser-resolution HYCOM simulation of this
region would result in a Gulf Stream that overshoots the separation latitude by following the continental shelf
until about the Grand Banks, without generating the meso-scale eddies that result from the jet’s instabilities
between the Cape Hatteras and the Grand Banks. On the other hand, finer resolution experiments are
computationally very expensive; the 1/12◦ discretization consists of 1678 × 1844 horizontal points and 32
layers (nearly 108 points) with a simulation versus wall clock time ratio of about 100 on 200 CPUs of a Cray
XT3 machine. In other words, the present simulation took about 18 days of real time (86,400 CPU hours)
to complete. A simulation with 1/24◦ resolution would be approximately 8 times larger; almost 7 × 105

CPU hours and many weeks in real time. Further refinement in resolution is beyond our computational
resources at the present time. Thus, being constrained in both directions, towards the coarser and finer
grids, we follow the methodology resorted in a previous study (Haza et al., 2008), in which a spatial filtering
was used. The spatial filtering of the flow is carried out via a convolution product of the velocity field with
a Gaussian function. The spatially-filtered velocity uF at location i0, j0 and time step k is:

uF (i0, j0, k) =

∑

i,j u(i, j, k)e
[(i−i0)2+(j−j0)2]/σ2

∑

i,j e
[(i−i0)2+(j−j0)2]/σ2

(17)

This corresponds to a Gaussian-weighted, spatially-averaged smoothing of the horizontal gradients of the
flow with a length scale ∼ 2σ, while preserving the time dependence. The smoothing parameter values are
taken as σ = 1.5; 3 and 5 grid points.

Secondly, since the smoothing of the velocity fields can only be done off-line, we rely on off-line advection
of particles in all cases. Comparison of 900 on-line and off-line particle releases in the original velocity field
did not reveal significant differences in the FSLE curves using the fastest-crossing method and chance pairs.
The computational cost of the model limits the total simulation time to a four month time window. As
shown below, for the relatively low resolution of the basin-scale simulation as compared to either of the
other model flows, this time scale is not long enough to fully investigate the diffusive range of the resulting
relative dispersion.

5.2. Review of relevant observational studies

Unlike in the previous two test cases, the realism of the HYCOM simulations would allow some compar-
ison of the relative dispersion statistics to the existing observations in this region. The first investigation of
relative dispersion in the Gulf Stream region was carried out by Price and Rossby (1982), who found power
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law dependence of relative diffusivity that is consistent with either a Richardson or an exponential regime. A
large data set of subsurface drifters released in the Gulf Stream region was analyzed by LaCasce and Bower
(2000). In this study, relative diffusivity plots indicated a Richardson regime for separation scales between
10 km and 100 km for floats deployed at 600 m depth. The behavior at larger separation scales was too
oscillatory to clearly identify any regimes. One of the primary obstacles in that study appeared to be low
number of pairs. Since the floats have not been typically deployed in clusters, their small number resulted
in large separation distances on the basis of chance pairs. Subsequently, an area rich with drifter data was
targeted by LaCasce and Ohlmann (2003). Analyzing 140 pairs of drifters with a separation distance of less
than 1 km in the Gulf of Mexico, LaCasce and Ohlmann (2003) found two regimes; an exponential regime to
about 50 km or 10 days, and a regime that seems to be in between ballistic and Richardson, depending on
whether D2(t) or λ(δ) is used, for longer times and larger separation distances. In the North Atlantic, two
other data sets have been generated and analyzed recently. Using a mid-latitude floats in the central part
of the North Atlantic, Ollitrault et al. (2005) found a Richardson regime for separation distances between
40 and 300 km. A data set of 55 surface drifters launched in pairs and trios in the Gulf Stream region and
tracked with hourly sampling was investigated by Lumpkin and Ellipot (2009), who conclude that these
drifters exhibit Richardson’s law dispersion from 1-3 km to 300-500 km. This study also concludes that
drifters do not exhibit exponential separation at scales larger than 1-3 km.

5.3. Results

Before we present the relative dispersion results, we first investigate the effect of the spatial filtering on
the flow field using Okubo-Weiss maps in order to see whether there is any significant difference with respect
changing model resolution. Fig. 13 appears to indicate that the result are qualitatively similar to those seen
in Fig. 9.

While the existence of an initial exponential regime is generally hard to quantify from D2(t) curves, we
find in all cases a D2 ∼ t3 power-law corresponding to the Richardson regime for t ≥ 3 days (Fig. 14). As
also shown in Haza et al. (2008), the spatial filtering of the flow field slows down the dispersion speed at a
given time and tends to prolong the initial transition regime. This is generally consistent with the trends
in D2(t) seen in other sections, namely when synthetic drifters are advected with a truncated modes in the
2D turbulence model (Fig. 3a) and when the resolution is changed in ROMS (Fig. 8).

As in ROMS experiments, both first- and fastest-crossing methods are used to compute the FSLE. The
full field FSLE (Fig. 15) displays an exponential regime for the scales 1 km ≤ δ ≤ 100 km, that is for the
scales smaller than two to three times the radius of deformation in this region, 35 km ≤ Rd ≤ 50 km. Beyond
that critical scale, the curve describes a power-law regime.

It is found that the FSLE plateau is reduced with increasing filtering, while the large scale dispersion
remains the same, as in previous sections. The first-crossing method in Fig. 15a yields a power law very close
to the Richardson regime (λ ∼ δ−2/3), while the fastest-crossing method (Fig. 15b) displays a power-law
closer to the ballistic regime (λ ∼ δ−1). The difference in power-law between both methods is in part due
to the more pronounced tendency of particles to wiggle in the small scales than in the large scales, thereby
relatively slowing further the dispersion time of particle-pairs at the small scales by reducing the plateau
value, and lifting the slope of the larger scale FSLE.

Noting that chance pairs have better properties for computing large scale statistics, the FSLE curves
for all experiments are estimated also on the basis of chance pairs. The results show that the slope of λ(δ)
becomes a bit steeper for δ > 100 km in the case of the first-crossing method (Fig. 15a) while there is no
significant change with the fastest-crossing method (Fig. 15b). This is the same trend as observed in the
ROMS computations. With the chance pairs, filtering reduces the FSLE plateau, while the behavior at large
scales remains unchanged. As expected, we conclude that the fastest-crossing method is less sensitive to
the differences between original and chance pairs than the first-crossing method.

Following the arguments outlined in Section 4, λ is rescaled by Q and the results are displayed in Fig. 16.
The collapse of the FSLE plateau occurs effectively with the fastest-crossing method (Fig. 16b), while it is
less effective with the first-crossing method (Fig. 16a). Since the exponential regime is a signature of the
hyperbolicity of the flow field, one can assume that the fastest crossing method in this particular HYCOM
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simulation is more suited to capture the relative dispersion from the hyperbolic regions of the eddy-field.
These results show a trend somewhat opposite to the ROMS experiments. It is either due to a difference in
the nature of the circulation, or to the simple fact that altering the stretching rate of the velocity field by
applying low-pass filters is not a dynamical equivalent of changing the numerical horizontal resolution.

How do HYCOM results compare with the existing observations? The only data set with which we can
make direct comparisons is that of Lumpkin and Ellipot (2009). The FSLE curves shown in Fig. 15 are in
excellent quantitative agreement (both the slope and magnitude of the λ(δ)) with their result for δ > 200 km.
For δ < 200 km, the model encounters the exponential regime in which the magnitude of the maximum FSLE
is determined by the strain set in the hyperbolic regions between the meso-scale eddies, whereas observations
indicate an extension of the Richardson regime down to 3 km so that λ(δ = 3 km) ≈ 10 days−1, or some 20
times faster than modeled here. The most obvious reasons for this discrepancy are several missing ingredients
in HYCOM with respect to oceanic conditions. As the authors state, this experiment was conducted under
extreme weather conditions, where winds were probably strong enough for flow conditions to deviate from
an approximate geostrophic balance and lead to submeso-scale instabilities. These instabilities may have
extended the Richardson’s regime to much smaller scales than the meso-scale eddy scale. While the level
of the exponential regime does not compare well to that measured by Lumpkin and Ellipot (2009), we
note that the e-folding time of roughly 2 days is in agreement with that inferred by LaCasce and Ohlmann
(2003) in the Gulf of Mexico with the SCULP data. High winds may have also caused wave-driven Stokes
drift, as well as flow divergence and other small-scale processes that are certainly missing in this model.
Overall, the identification of an exponential regime of the relative dispersion in oceanic observations remains
elusive, either due to drifter launch and sampling limitations, or simply the challenge of developing a basic
understanding of the oceanic multi-scale turbulent fields subject to complex forcing conditions, especially
due to the lack of Eulerian fields simultaneous with drifter data. These differences between the models and
observations at the submeso-scales should in principle serve as excellent guidelines for model development.
Nevertheless, the existing hierarchy of the numerical simulations reveal a fairly consistent picture; the
relative dispersion arising from the flow field is always divided into two regimes determined by the large
coherent turbulent structures. The relative dispersion at scales larger than the eddy scale is not sensitive to
small-scale processes while relative dispersion at scales smaller than the eddy scale is characterized by an
exponential regime, where the value of the fastest dispersion is given by the highest strain rate resolved in
the model. In Fig. 17, the values of λmax in the exponential regimes of the ROMS and HYCOM simulations
are plotted as a function of Q. The scatter points collapse well along the lines depending on whether first-
or fastest-crossing method is used.

6. Summary and Conclusions

The time and scale dependence of the relative dispersion of particle pairs is a fundamental Lagrangian
measure which ocean models are increasingly asked to predict. Our main objective has been to quantify the
sensitivity of this particle-based statistic to changes in the spatial resolution of the underlying Eulerian model
data. To accomplish this we have examined the output from three standard models of increasing complexity
and realism. First, we consider a highly idealized, statistically steady, homogeneous and isotropic turbulence
in 2-D. For this flow, resolution effects can be readily studied via spectral truncations of the full dynamics.
Next, we consider a process model of a baroclinic wall jet simulated with ROMS. Intrinsic sub-grid scale
closures allow examination of distinctly different spatial resolutions at fixed values of the input forcing.
Finally, we examine the output of HYCOM in the North Atlantic basin. In this case, variations in model
spatial resolution are achieved by post-processing the output velocity fields with spatial filters of increasing
scale.

In terms of the resulting dispersion statistics of particle pairs and their sensitivity to model resolution,
there are a number of results which are universal across the three disparate flows. As expected, short
time and small scale pair separations are most sensitive to the details of the advecting flow, and thus most
dependent on the spatial resolution of the model. In all flows, the elimination of small scale features implies
an increase in the exponential dispersion regime where the logarithmic rate of separation is independent
of the separation distance. This is clearly seen in calculations of Lyapunov exponents. In each model, the
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limiting small-scale value of the finite-size Lyapunov exponent was found to be dependent on the resolution
of spatial velocity gradients in hyperbolic regions of the flow field. Simple rescaling of the dispersion times
with the average value of the resolved enstrophy (in the case of homogeneous turbulence), or the average
positive value of the Okubo-Weiss parameter (for the inhomogeneous flows) produces very good collapse of
the limiting stretching exponent. Similar resolution dependent rescaling of time indicates that the shape of
the relative dispersion curves are self similar during the initial, scale independent phase.

At long time and large space scales all three flows showed the expected insensitivity of the relative
dispersion to the resolution of small scale motions. This was most apparent in the 2-D turbulence case
where the simplicity of the model and the closed flow domain allow for almost arbitrarily long simulations
and full resolution of the diffusive limit. In the diffusive regime, the eddy-diffusivity provided by the relative
dispersion is essentially a single point statistic which depends only on the Lagrangian kinetic energy and
velocity auto-correlation time,

K =
1

2

dD2

dt
≈ 2

∫ t

t0

〈v(a, t) · v(a, t′)〉adt′ = 4ElagTlag .

Detailed calculations in the 2-D turbulence case where the limiting relative diffusivities are identical for all
spectral truncations considered shows that the Lagrangian time-scale grows with decreasing resolution to
exactly compensate the decrease in kinetic energy. Similar behavior of the particle correlation time appears
to exist in the baroclinic ROMS simulation where small changes in Eulerian model resolution produce large
changes in the kinetic energy but have very little effect on relative dispersion at large times.

Universal conclusions are less clear at intermediate time and space scales where the behavior of the
relative dispersion is sensitive to the detailed dynamics of meso-scale flow features. Indeed, there are several
indications that the effects of spatial smoothing at the grid scale effect the relative dispersion at significantly
larger scales. In the 2-D turbulence, elimination of the structures at the small scale end of the inertial
range completely eliminates the Richardson regime observed in the full dynamics. Indeed, the removal of
all but the largest scales of motion leaves the diffusive regime unchanged while extending the exponential
regime which implies that suppressing small scale motions leads to faster growth of the relative dispersion at
intermediate times. This behavior is less noticeable in the ROMS simulation, where the power-law scaling
of K(t) was found to be somewhat less than the Richardson prediction but approximately invariant across
resolutions.

The simple rescaling of time which unifies the results at small scales does not lead to a collapse of the
data at intermediate and long times. For fixed values of rescaled time in the non-exponential regime, each
model indicated an increase in the relative dispersion with decreasing spatial resolution.

On the whole, these results are encouraging for ocean models - the large scale, long time diffusive behavior
is found to be extremely insensitive to resolution while modifications to the short time regime can be properly
accounted for by considering the spatial resolution of Eulerian measures of velocity gradients. There are,
however, some caveats. (1) In each flow, the resolution/spatial smoothing operators studied have been
constructed to leave the time-dependence of the resolved flow as close to that of the reference simulation as
possible (note the similarity of the phase information across resolutions in ROMS in (Fig. 6). This may not
be the case for model data comparisons in the ocean context or for model-model comparisons where spatial
truncation significantly alters the time dependence of the large-scale motion. (2) At intermediate time-
scales, the overall behavior of the relative dispersion is resolution dependent with this dependence felt even at
separation distances much larger than the grid-scale. The increase in the extent of the exponential separation
regime and the modification of the growth rate impact the shape and strength of the resulting ’Lagrangian
Coherent Structure’ boundaries computed via dynamical systems techniques. (3) The insensitivity of the
resulting eddy-diffusivity to resolution implies that care should be taken when estimating Lagrangian time-
scales from coarsely resolved models since these will necessarily be overestimated when the total Lagrangian
kinetic energy is underestimated.
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A. Initial conditions in ROMS

The initial salinity and temperature profiles are:

S(x, y, z, t = 0) = aini
1 + aini

2 tanh

(

z + hini
c

hd

)

, (18)

T (x, y, z, t = 0) = bini
1 + bini

2 tanh

(

z + hT
c

hd

)

, (19)

where hini
c = 25 m, hT

c = 22 m, hd = 5 m,

aini
1 =

Ssrf + Sbot

2
, (20)

aini
2 = aini

1 − Sbot , (21)

bini
1 =

T srf + T bot

2
, (22)

bini
2 = bini

1 − T bot , (23)

and Ssrf = 38.1, Sbot = 38.45, T srf = 23.25◦C and T bot = 13.0◦C.
At the eastern (inflow) boundary, if Ymax = 250 km, Y0 = 8 km and Ld = 12 km, the tracers are relaxed

to the following profiles:

S(x = x
E
, y, z, t) = a1(y) + a2(y) tanh

(

z + hc(y)

hd

)

, (24)

T (x = x
E
, y, z, t) = b1(y) + b2(y) tanh

(

z + hT
c

hd

)

, (25)

where if y ≤ Ymax − Y0

a1(y) = aini
1 − ∆S

2
exp

(

y − Ymax + Y0

Ld

)

, (26)

a2(y) = a1(y) − Sbot , (27)

b1(y) = bini
1 +

∆T

2
exp

(

y − Ymax + Y0

Ld

)

, (28)

b2(y) = b1(y) − T bot , (29)

hc(y) = hini
c − ∆h exp

(

y − Ymax + Y0

Ld

)

, (30)

otherwise

a1(y) = aini
1 − ∆S

2
, (31)

a2(y) = a1(y) − Sbot , (32)

b1(y) = bini
1 +

∆T

2
, (33)

c2(y) = b1(y) − T bot , (34)

hc(y) = hini
c − ∆h , (35)

and ∆S = 0.9, ∆T = 1.75◦C and ∆h = 13 m.
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Figure 9: Snapshots of the Okubo-Weiss partition of the surface flow for increasingly finer horizontal resolution (8, 4, 2 and
0.5 km). Units are in sec−2. 23
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Figure 11: Same as Fig. 10, but after scaling λ with Q.

24



34 34

41 41 41

48
48 48

55

−
75

−
75

−
75

−
68

−
68

−
68

−
61

−
61

−
61

−
54

−
54

−
54

−
47

−
47

−
47

−
40

−
40

−
40

−
33

−
33

−
33

−
26

−
26

−
26

0.5

1

1.5

2

2.5

Figure 12: (a) Snapshot of the HYCOM velocity field showing the Gulf Stream and meso-scale eddies as the main flow features.
The color shows

√
u2 + v2 in ms−1. (b) Subset of the four-month trajectories from 14,615 particles launched between Cape

Hatteras and the Grand Banks.

25



Q (σ=5∆x)

 

 

100 200 300 400 500 600 700

100

200

300

400

−2

0

2

x 10
−6

Q (σ=3∆x)

 

 

100 200 300 400 500 600 700

100

200

300

400

−2

0

2

x 10
−6

Q (σ=1.5∆x)

 

 

100 200 300 400 500 600 700

100

200

300

400

−2

0

2

x 10
−6

Q (full)

 

 

100 200 300 400 500 600 700

100

200

300

400

−2

0

2

x 10
−6
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Figure 14: Relative dispersion versus time D2(t) computed from the five different cases, the full and spatially smoothed fields
of HYCOM simulations.
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Figure 16: Same as Fig. 15, but after scaling λ with Q.
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