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Abstract

A simple method of fusing tracer observations and model outputs for comput-

ing surface velocities in the ocean is implemented and tested in the framework

of the twin experiment approach. Synthetic data from realistic velocity out-

puts produced by the operational Mediterranean Forecasting System (MFS)

are used. The method (Piterbarg, 2009) allows to estimate a velocity field

using two consecutive tracer snapshots. The focus is on testing realistic time

intervals between snapshots and partial tracer observations. The considered

configuration consists of a tracer patch released and advected by the cur-

rent, and is motivated by the practical problem of estimating velocities and

concentrations using satellite data in case of pollutant releases such as oil

spills. An extensive set of experiments has been carried out, and the method

performance has been quantified in terms of improvements in accuracy with

respect to the model. The improvement ranges from values of approximately
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80-90% for concentration and 50-60% for velocity in the case of almost perfect

data, to values of 30-40% for realistic time intervals of the order of days and

reduced tracer information, and values of 15-20% when only the boundary of

the patch is observed. The results are found to be robust to flow variability

and patch parameters.
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1. Introduction

The problem of estimating velocities from tracer information has a long

history in physical oceanography. Earlier works focused on how to obtain

estimates of the large scale circulation from in-situ hydrographic vertical sec-

tions. Computing relative geostrophic velocities (or velocity vertical shear)

from hydrostatic data is quite straightforward, but computing the absolute

value of velocity is very challenging, since it is an underdetermined prob-

lem. In the 1970’s two revolutionary methods were proposed to attack this

problem: the ”beta spiral” method by Stommel and Schott (1977) and the

”inverse” method by Wunsch (1977, 1978). Even though the methods are

different, they are conceptually related. Potential density surfaces are con-

sidered as material surfaces, so that conservation of potential vorticity and

possibly other tracers provide additional constraints that allow to determine

the absolute velocity. Building on these pioneering works, a number of meth-

ods has been proposed and used in the literature, based on potential vorticity

balance (Olbers et al, 1985), on the Bernoulli theorem (Needler, 1985) and
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on generalized applications of the concept of Ertel’s potential vorticity (e.g.

Haynes and McIntyre, 1990; Marshall et al., 1993; Kurgansky et al, 2002)

In the last two decades, information on tracer distribution at the ocean

surface has hugely increased thanks to the availability of several different

sensors carried by various satellites. Their resolution goes from hundreds of

meters to kilometers, allowing to resolve mesoscale phenomena. Even though

satellite data have limitations, such as cloud coverage inhibiting the obser-

vation of the sea surface at certain wavelengths, they provide a wealth of

information which has prompted the development of new methods to op-

timize their use. Estimating surface velocities from satellite measurements

is conceptually different from using in-situ vertical tracer sections. Estima-

tion methods essentially rely on the use of image sequences where the tracer

(or its proxy) is assumed to be transported by the currents and to obey a

known equation such as the advection-diffusion equation in two dimensions.

The main challenge is represented by the fact that while the cross-gradient

velocity information can be retrieved from the tracer distribution at subse-

quent times, the along-gradient component cannot be directly inferred. The

problem can be looked at as a classical inverse problem applied to the tracer

equation (Fiadeiro and Veronis, 1984; Kelly, 1989).

Various approaches to tackle this problem have been proposed in the lit-

erature. Under the assumption of stochastic forcing, the problem can be

formulated as a statistical estimation of unknown parameters (Frankignoul

and Reynolds, 1983; Ostrovskii and Piterbarg, 1995; 1997; 2000). This ap-

proach, even though general and powerful, is based on the assumption of

slowly varying fields and therefore cannot be effectively applied to mesoscale
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velocities. Significant efforts have also been focused on methods that project

the surface velocity on the gradient of the remotely observed field, and use

various constraints or regularizations to reconstruct the two-component ve-

locity field (Cohen and Herlin, 1996; Memin and Perez, 1998; Bereziat et

al., 2000; Vigan et al., 2000; Corpetti et al., 2002; Isambert et al., 2005).

The Maximum Cross Correlation method (MCC) is also worthy of mention,

a procedure that is not based on the inverse approach and is applicable when

image time series at high temporal resolution are available (Emery et al,

1986; Emery et al., 1992; Crocker et al. 2007). Finally, we would like to

mention a recent method based on tracking singularities in the tracer field

(Turiel et al. 2008) which very accurately detects mesoscale flow features,

although it is not able to estimate the velocity magnitude.

Another avenue that is expected to become more prevalent as ocean cir-

culation models progressively gain in resolution and predictive skills is to

use assimilation techniques to combine information from satellite data with

information from the circulation models describing the evolution of the ve-

locity field (Bennett, 1992). Some first steps in this direction have been

recently proposed (Herlin et al., 2004; Cuzol and Memin, 2005; Papadakis et

al., 2005; Herlin et al., 2006; Huot et al., 2006; Korotaev et al, 2008), at least

for simplified dynamical models for the velocity. Generalizations to more re-

alistic circulation models are possible, but they require significant technical

development and could lead to possible problems of incompatibility between

model velocities and satellite data in terms of dynamics and/or resolution.

Conceptually, these approaches are similar to those applied to surface

Lagrangian data for the reconstruction and assimilation of the velocity field
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(Molcard et al., 2003; Taillandier et al., 2008). Lagrangian data provide

information on the fluid particle positions at discrete time intervals, and

consecutive observations can be used to estimate the velocity, provided that

the time interval is smaller than the typical Lagrangian time scale TL, (i.e.

the time over which particle velocity is self-correlated; TL for the surface

ocean typically varies in the range 1 − 5 days, see e.g. Bauer et al., 2002;

LaCasce, 2008; for the Mediterranean see Falco et al., 2000; Poulain and

Zambianchi, 2007). The simplest methods estimate the velocity as the ratio

between position and time increments (e.g. Hernandez et al., 1995), while

more general and powerful approaches introduce an appropriate observational

operator based on the particle advection equation, and correct the Eulerian

velocity field requiring a minimization of the difference between observed and

modeled trajectories (Molcard et al., 2003; Taillandier et al., 2006a; Ide et

al., 2002; Salman et al., 2006).

Even though conceptually similar, tracer observations are more chal-

lenging than Lagrangian data because tracer particles are not individually

tracked: rather, only the gradients of the tracer are observed. As a con-

sequence, only information on the cross-gradient velocity can be directly

extracted from successive tracer observations. Approaches based on appro-

priate observational operators are possible also for tracer data, but they need

more extended sequences of successive measurements or additional informa-

tion in order to constrain the along-gradient velocity (Korotaev et al., 2008).

In this paper we consider a method for tracer data that has been re-

cently proposed by Piterbarg (2009). The method, that is based on only two

successive snapshots of the tracer distribution combined with model infor-
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mation, can be considered as a first step toward a full assimilation approach.

Actual assimilation implies that the dynamical model that generates the ve-

locity field is corrected using the data. In the cited paper, instead, model

velocity outputs are used together with satellite data to obtain an optimized

”blended” velocity, while the actual evolution of the velocity model is not

altered. The blending is performed using a fuzzy logic approach, and the

information from the model is used to remove the uncertainty of the along-

gradient velocity. The method is general and includes a tracer equation with

sources and sinks in addition to the basic advection and diffusion. In the

simplest case, when sources and sinks are zero or assumed known, the along-

gradient velocity simply coincides with the model estimate.

While the use of full assimilation is expected to provide more complete

corrections, the present method has the advantage of being very simple and

portable. By combining model outputs and satellite data it can be easily used

for any dynamical model and in particular for complex operational ones. The

method is therefore especially promising for practical applications where for

example real-time corrections of the velocity field are necessary to improve

the prediction of the spreading of the pollutant.

The method is tested using synthetic information from a realistic opera-

tional model in the Mediterranean Sea, implemented in the framework of the

Mediterranean Forecast System (MFS). We use the classical ”twin experi-

ment” approach (Molcard et al., 2003; Taillandier and Griffa, 2006) where

a main control run is regarded as the ”true” ocean, and a tracer is released

at its surface and advected. Another run, starting from a different initial

condition, is regarded as the ”model”, reflecting our incomplete knowledge
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of the true ocean. The tracer is ”observed” in the truth at time intervals

∆tobs, and the surface velocity is estimated combining the tracer data and

the model outputs. The method skills are evaluated through a quantitative

comparison with the control velocity field.

The specific configuration that we consider consists in releasing a local-

ized tracer patch and advecting it in the flow field. The configuration is

motivated by the practical application of a pollutant released from a source,

such for instance an oil spill, observed by visible, infrared or microwave satel-

lite sensors. An extensive sensitivity study is performed, varying the interval

∆tobs between successive observations in a realistic manner, and considering

degradation in the quality of the data going from idealized perfect data to

reduced data describing only the patch boundary. Also the time and space

variability of the applications, and the dependence on the parameters of the

patch are considered.

The paper is structured as follows. In Section 2, a brief description of the

method is provided, while the experimental setup is described in Section 3.

Results are presented in Section 4 and a summary and concluding remarks

are given in Section 5.

2. The method

2.1. Problem statement

We start with a description of the general setup and will proceed to speci-

fying the goals for the present work. First, let us assume that the normalized

concentration c(x, y, t) of a tracer is known from successive satellite observa-
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tions and its evolution is described by the following transport equation

∂c

∂t
+ u

∂c

∂x
+ v

∂c

∂y
= f(x, y, t) (1)

where x, y are the two-dimensional (horizontal) surface coordinates and t is

time, u, v are the two Cartesian components of the surface velocity u, and f

represents the sum of all the source and sink processes acting on the tracer.

Notice that in the case of an oil spill application, f includes a source term

describing the pollutant release, the dissipation due to turbulent motions

and all the ”fate” processes describing the chemical transformations of the

oil patch. The advection velocity u includes not only the ocean currents but

also the wind component that contributes to advect the spill at the ocean

surface. In the following applications (Section 3 and 4) the wind component

is not explicitly considered, but the methodology would not change if it were

included.

Thus, for a fixed point in space and time (1) represents a straight line

Au + Bv + E = 0 (2)

in the (u, v) plane with

A =
∂c

∂x
, B =

∂c

∂y
, E =

∂c

∂t
− f (3)

Now, let us suppose that the forcing f is not known exactly, but rather some

bounds are available; in particular, let fb be a first guess (background) value

of f estimated from satellite observations (or, for the sake of generality, from

any other data source), with a precision h, i.e.

|f − fb| < h (4)
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The consequence of (4) in the (u, v) plane is represented by a confidence

region for the unknown velocity u, shown in the left panel of Fig. 1 as a

shaded strip.

Finally, let us assume that velocity outputs um from a circulation model

are available, providing estimates of the surface velocity, as shown by the red

points in Fig.1. The problem is to aggregate the above information to get an

optimal estimate uest of u.

A procedure realizing such a goal is commonly called data/model fusion,

to be distinguished from traditional assimilation where an estimate is ob-

tained iteratively by injecting observations along the model run time.

2.2. Fuzzy logic approach and particular application

The above problem is a good target for methods based on the fuzzy set

theory (on fuzzy logic see, e.g., Dubois et al, 1997) since the boundaries of

the confidence regions for data and model are quite vague and no statistical

approach is possible because of small samples. Such a method was developed

by Piterbarg (2009) and tested on idealistic flows, the general case of un-

known but bounded forcing (4) was considered, and the method was tested

in the ideal case of perfect tracer observations and small observation time

interval ∆tobs, allowing a faultless computing of the tracer time derivative.

In fuzzy logic uncertainties are parametrized by means of membership

functions, rather than using probability distributions and other statistical

characteristics which are difficult to estimate from poor samples, as is typical

in the case of ocean observations. A membership function m(x) for a fuzzy

variable X takes values between 0 and 1. In particular, m(x) = 1 if x is

a possible value of X and m(x) = 0 if x is an impossible value. If for
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some value x our knowledge is not enough to assign it to either category,

then 0 < m(x) < 1. As to the velocity estimation problem, a membership

function mo(u, v) for the unknown velocity coming from observations is set to

be 1 if |Au+Bv+Eb| < h, 0 if |Au+Bv+Eb| > h′, and to be between 0 and

1 otherwise, where Eb = ∂c
∂t

− fb and h′ is a limit that the deviation |f − fb|
will never exceed while h is just a reasonable estimate for this deviation.

Similarly, another membership function mb(u, v) can be defined, on the basis

of model experiments. One of the most widespread methods of deriving

a point estimator from an aggregated membership function (what in the

fuzzy logic context is called defuzzification) is to take uest as the centroid

of the region described by the function f(u, v) = min{mo(u, v), mb(u, v)}.
This is indeed the algorithm used in Piterbarg (2009) with some further

simplifications.

Thus, the only assumption for the fuzzy logic algorithm is an approximate

knowledge of the range for the unknown RHS in the transport equation and

of the range of variabilty of the model velocity estimates.

In the present paper, the method is tested focusing on the problem of

realistic ∆tobs and reduced tracer observations, while restricting ourselves

to the case of known forcing f . In the case of known f the confidence

strip degenerates into a straight line given by (2) and the general solution

suggested by Piterbarg (2009) reduces to orthogonal projecting the model

output onto this line (Fig.1, right panel). The corresponding estimation

formulas become straightforward:

uest = um − A(Aum + Bvm + E)

A2 + B2
, vest = vm − B(Aum + Bvm + E)

A2 + B2
(5)

allowing at the same time a very clear interpretation. Let us comment on
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(5) which will represent the main tool in the experiments described in the

following.

First, equations (5) can be equivalently obtained by setting the compo-

nent of uest orthogonal to tracer lines equal to that computed from the tracer

observations only and setting the tangent component equal to the model one.

The latter is quite logical since no information on this component can be de-

rived from the tracer (e.g., Fiadeiro and Veronis, 1984).

Second, the proposed estimate always improves the first guess as can

be seen from Fig.1 (right panel). Indeed the true velocity lies on the indi-

cated straight line and the model error is represented by the length of the

hypotenuse while the estimation error is the length of a leg. Moreover, in

Piterbarg (2009) it is shown that on average the relative improvement with

respect to the first guess has a lower bound of 1 − 1/
√

2, i.e. about 30%

Then, it can be checked from (5) that

Auest + Bvest + E = 0 (6)

i.e. the estimated velocity field transfers the tracer in the same way as the

true velocity does, a very important property when using the estimate for

predicting the tracer spreading (practically, however, (6) holds only approx-

imately, with an unknown error because of space/time discretization).

Finally, computational procedures based on (5) are extremely fast and

stable.

On the other hand, one of the drawbacks of the suggested method is that

it is a pointwise procedure which sometimes leads to a somewhat irregular

field estimate requiring a spatial smoothing.

11



3. Experimental setup

3.1. Numerical implementation

The method is implemented and tested using synthetic data in the frame-

work of the twin experiment approach. The case of a purely advective tracer

is considered, so that the source/fate term f(x, y, t) in (1) and (3) is set equal

to zero in the numerical simulations. Notice that the results can be easily

generalized to the case of an exactly known function f(x, y, t) as discussed

in Section 2, while the effects of a partially unknown f(x, y, t) can be signifi-

cantly different (Piterbarg, 2009), and they will be addressed in future works

considering specific applications.

In the present implementation, the velocity fields are provided by the

outputs of the operational Mediterranean Forecasting System (MFS) in the

northwestern Ligurian Sea (Fig. 2). A similar setup has been already used in

one of the test cases in Piterbarg (2009) to illustrate the method considering

the ideal case of complete tracer information. Here a more systematic inves-

tigation of realistic observation parameters is carried out. The MFS ocean

model is a discretized version of the primitive equations based on the OPA

model and implemented on the Mediterranean basin. The configuration is

the one described in Tonani et al. (2008), generated over a meshgrid of res-

olution ∆s= 1/16 degree (i.e. approximately 6 km). The MFS observing

system includes sea surface topography and temperature and salinity pro-

files, routinely assimilated in the model. Background error correlations are

computed with vertical time-dependent EOFs as reported in Dobricic et al.

(2005).

In our twin experiment the MFS control run (Truth) consists of a sequence
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of daily average velocities, u, starting at a given day IT1. A tracer is released

at IT1 and advected during the following 3 days. The tracer has an initial

Gaussian shape with width (standard deviation) R, simulating the released

patch. The tracer distribution is observed at time intervals ∆tobs, stored

and considered as representative of the True satellite data. The Model run,

which provides um, consists of MFS model daily average outputs from a

different initial state, IT2, corresponding to three days after IT1. The tracer

data extracted from the Truth are used at each interval ∆tobs to correct

the Model velocity using equations (3) and (5), and producing the Estimate

velocity fields uest. Model and Estimate velocity fields um and uest are also

utilized to advect the tracer, using the same initial deployment conditions

of the Truth run, thus providing Model and Estimate tracer concentration

fields, cm(x, y, t) and cest(x, y, t) respectively, which can be compared with

the True tracer concentration.

The method performance is quantitatively assessed considering the differ-

ences between the velocity and the tracer fields of Estimate and Truth, and

quantifying the improvements with respect to the Model. The quantitative

metrics describing the Estimate error (Er) and gain (Gain) are defined as

follows and applied to both the velocity and tracer estimates:

Er =
rms(Estimate − Truth)

rms(Model − Truth)
(7)

Gain =
rms(Model − Truth) − rms(Estimate − Truth)

rsms(Model − Truth)
= 1 − Er (8)

where rms is the root mean square.

From the numerical point of view, the advection equation (1) is discretized
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using a third order upwind method (Durran, 1999) with open boundary con-

ditions (Kantha and Clayson, 2000). The scheme has been chosen as a good

compromise between stability, accuracy and numerical simplicity. A certain

degree of numerical diffusion is expected to exist, but this is not a problem

for the present applications. Our goal is not to provide a perfect simulation

of a pure advection process but rather to consider a realistic application,

where deviations from perfect advection are expected to occur. The numer-

ical diffusion can be considered as mimicking the effects of environmental

small scale diffusion that are not resolved by the model.

The estimations (3) and (5) are performed computing finite difference

approximations of the derivatives A, B, E from the tracer data. A central

finite difference operator is used for the space derivatives and an upwind

operator for the time derivative. After applying (5), the velocity estimate

is smoothed to avoid noise at the grid scale using a simple Gaussian kernel

with a standard deviation corresponding to 2 grid points.

3.2. Region of application and flow parameters

The region of interest is the Ligurian Sea, a sub-basin of the Mediter-

ranean Sea characterized by a general cyclonic circulation and by the pres-

ence of a number of mesoscale recirculating gyres especially in the summer

(Astraldi et al., 1990). Two recent experiments have been performed in the

Ligurian Sea, MREA07 and MREA08, and the MFS model is presently being

validated on the basis of those data (Fabbroni et al., 2009 a,b). The specific

domain of application is shown in Fig.2 and has a size of 21× 17 grid points.

The region is located in the northern Mediterranean Sea, in the same

general area previously considered by Taillandier et al. (2006b) in their
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study on velocity reconstruction using Lagrangian data. Typical space and

time scales of the velocity field, as shown by the OPA model solutions and

confirmed by observations, are discussed in Taillandier et al. (2006b), and

are summarized in the following as they are relevant to the applications of

the present method. The mesoscale structures have space scales ranging from

RE ≈ 10 km for the smaller recirculating structures to RE ≈ 30 km for the

main cyclonic gyre. The typical mesoscale time scale TE, evaluated as the e-

folding of the velocity autocorrelations at fixed grid points, is of the order of

10 days or more. Superimposed to this there is a clear high frequency inertial

signal with TI ≈ 17 h. The Lagrangian time scale TL, computed from the

velocity autocorrelation following trajectories, is significantly shorter than

TE : TL ≈ 3 days. Overall, the field is characterized by TI < TL < TE , a

typical condition for mid-latitude flows in the open ocean or in regional seas

(e.g. Lumpkin et al., 2002).

In the present application, we concentrate on the mesoscale and larger

components of the flow, as reflected by the fact that we consistently use daily

average velocities for Truth and Model velocity, therefore removing the effects

of higher inertial frequencies. A conceptually similar approach, focused on

mesoscale, has been followed also in Taillandier et al. (2006b, 2008). Estima-

tion of higher frequencies and/or smaller scale motion is expected to require a

very large amount of data, and also the models are expected to be unreliable

at those scales due to limitations in small-scale forcing knowledge, resolution

and parameterization. The most important time scale in our applications

is expected to be TL, especially in relation to the size of the interval ∆tobs

between observations. We can expect that for ∆tobs > TL the information on
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velocity from tracer advection is significantly reduced, similarly to the case

of Lagrangian data. In the applications discussed in this paper we consider a

range of ∆tobs up to 3 days, i.e. ∆tobs ≤ TL. We anticipate, though, that as

shown by the results in Section 4 and differently from the Lagrangian data

case, the velocity estimation poses additional stability constraints on ∆tobs,

depending also on the size of the space discretization ∆s.

As to the spatial scales of the observations, we can expect that in order

to efficiently correct the mesoscale, the tracer configuration must have main

gradients at scales comparable to (or smaller than) the mesoscale. In the

present experiments, suggested by the specific application for oil spill predic-

tion observations, the size of the patch (typically smaller than the mesoscale

structures) corresponds to the size of the gradient and therefore controls the

correction. For different applications, such as for instance for sea surface

temperature or ocean color observations, where the tracer covers the whole

domain, the effectiveness of the correction will depend on the size and loca-

tion of the main gradients in each realization.

3.3. Numerical experiments and parameter sensitivity

A series of experiments, for a total of approximately 100 cases, has been

performed to test the skill of the estimation method varying a number of

parameters (summarized in Table 1).

The first set of experiments, called BASE experiments, tests the sensitiv-

ity to the main observation parameters, i.e. the interval between observations

∆tobs and the type of tracer information available (as defined in the follow-

ing). In this series of experiments the velocity is assumed to be constant in

time for 3 days for simplicity, and corresponds to the MFS output with IT1=
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May 26 2007 for the Truth and IT2 = May 29 2007 for the Model. In all the

experiments, the same release location x0 is considered, corresponding to the

grid point (15,8), and an initial Gaussian tracer distribution with R = 2∆s

is used. In the BASE experiments, the observation parameters are varied in

the following way. A range of values for ∆tobs is considered, going from ideal-

ized values of the order of a quarter of an hour to realistic values for satellite

observations of the order of few days. The method is implemented in the

most straightforward way, i.e. applying it independently to each sequence of

successive measurements, without imposing any form of persistency to the

correction. As to the spatial extension of tracer information, three different

modalities are considered, chosen so as to encompass different tracer distri-

bution data possibly available from satellite observations. An ideal case is

considered first and indicated as modality CA, where the exact values of

the concentration throughout the region of interest are assumed known. We

recall that the patch has a Gaussian shape, so that even though most of the

tracer is concentrated within the width R, non-zero concentration is actu-

ally found throughout the domain. The information is then degraded to the

modality indicated as CC, where the concentration is known only inside the

patch, defined by a cutoff value of the concentration ccutoff (ccutoff=0.1 for

the BASE experiments). Finally, the most realistic modality is considered

where only the boundary of the patch is observed, indicated as CB. In this

case, the observed concentration is assumed to be zero outside from the patch

and constant in the interior.

A second and wider set of experiments, VAR (partly overlapping BASE

for two cases), has been run to test the robustness of the estimation results
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in terms of spatial and temporal variability of the flow field. A matrix of 10

release locations in the region of interest has been considered (Fig.3), and

two different realizations of the velocity field. The first one is the same as

in BASE, while the second one considers a sequence of 3 successive daily

outputs from the MFS model starting from the same days as in BASE. In all

the estimations, the initial patch has the same width as in BASE, R = 2∆s,

and the estimation is performed for CC and CB considering the realistic

value ∆tobs = 1 and again ccutoff=0.1.

Finally, a last set of experiments, PATCH, explores the sensitivity to the

patch parameters R and ccutoff , and to its propagation dynamics which is

affected by different degrees of numerical diffusivity. All the other parameters

are kept as in BASE.

4. Results

4.1. The BASE experiments: sensitivity to observation parameters

Fig. 4 shows, as an example, the results of one of the BASE experiments

in terms of reconstruction of the tracer and of the velocity fields: the upper

panels show the Truth velocity field and the tracer patch as advected by the

Truth velocity field; the upper-middle panels depict the Model velocity field

and the tracer patch as advected by the latter. It is worth noticing that both

Truth and Model velocity fields show the presence of a main cyclone, but

the specific characteristics of the flow are different in the two realizations,

resulting in significantly different tracer concentrations after 3 days due to

the cumulative effect of advection. The lower-middle and lower panels show

the velocity field as reconstructed by the method and the tracer field resulting
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from its advection, for the modality CA and with ∆tobs = 0.1 days (lower-

middle) and ∆tobs = 0.25 days (lower).

The main results of the BASE experiments are summarized in Fig.5,

where the Gain for the estimates of velocity (upper panel) and concentration

(lower panel) are shown versus ∆tobs and for the three different modalities

of observations CA, CC, CB (blue, red and green lines respectively). The

Gain is computed at day 3 using the metric (8), calculated in the area where

the correction is most active, i.e. inside the patch, where the concentration

is significantly different from zero and greater than the cutoff value ccutoff .

A number of preliminary tests has been performed computing the Gain over

the whole region, i.e. without cutoff, and they have shown that while the

values are consistent, the Gain computed with the cutoff is generally less

sensitive to the details of the realization and shows more clearly the depen-

dence on the main parameters such as ∆tobs. Notice that, since the velocity

is estimated but not assimilated in the operational model, each correction

at every ∆tobs is independent from the previous ones and the values of Gain

keep approximately constant during the three day experiments. The concen-

tration, on the other hand, is integrated over uest, and the value of Gain at

day 3 depends on the evolution during the previous days.

The general behaviour of the Gain in Fig.5 shows that the estimation

skills decrease as the information deteriorate, i.e. at increasing ∆tobs and

going from CA to CB, as can be expected. The specific characteristics of

this general trend, though, are not trivial and they are discussed in detail in

the following.

The highest Gain values are obtained for CA, i.e. for complete informa-
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tion on the concentration (blue lines in Fig.5), reaching values of 80%-90%

for the concentration and 50%-60% for the velocity. These values are close

to the theoretical values for the estimates (3) and (5), obtained when the

cross-gradient velocity is perfectly estimated from perfect observations in

space and time (Piterbarg, 2009). In this case, the concentration Gain is

expected to reach 100%, while the velocity gain (defined in terms of both

velocity components) is expected to be of the order of 30% or more, depend-

ing on the cross-gradient correction in the specific realization. Notice that

the maximum values of the Gain for CA are obtained for ∆tobs ≈ 0.2 days.

Examples of the estimated velocity uest, and tracer cest at day 3 for ∆tobs

=0.1 and 0.25 days respectively are shown in Fig.4 (lower panels). In both

cases the method appears to effectively correct the fields, as shown by the

closer resemblance to the Truth than to the Model (upper panels), but the

results appear significantly better for ∆tobs =0.1 days, as appears especially

in the concentration patterns.

For values of ∆tobs > 0.25 days, the Gain values for CA are not reported

in Fig.5 because the method does not converge and provides overflow values.

This can be explained in the following way. Let us consider first the (forward)

advection equation (1) and recall that its integration is stable only if the CFL

criterion holds (Courant et al., 1928), i.e. U∆t/∆s < 1, where U is a typical

value of velocity and ∆t is the numerical time step. In our case, assuming U

=20 cm/s, ∆t must be ∆t < 0.3 days for the CFL criterion to hold. In all the

forward integrations of (1), the numerical ∆t is kept at ∆t = 0.01 days, so

that the criterion always holds. Outside the patch, however, where the tracer

concentration is low and the gradient weak, the tracer field evolution may
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show Gibbs oscillations due to the advection scheme utilized. On the other

hand the estimation formulas (3) and (5) are also based on the discretization

of the advection terms, but in this case the relevant time interval is not the

numerical ∆t interval, but rather the interval between observations ∆tobs used

to estimate the derivatives. It can therefore be expected that when ∆tobs gets

close to the CFL limit, the advective signal is not correctly resolved. This is

especially true in the regions outside the patch where the tracer concentration

is very low and numerical oscillations are present with spatial scales of the

order of the grid size. These conditions can cause overflows in an estimation

method which is based on the spatial derivatives of the concentration. In our

experiments the overflows are indeed observed only in the CA case, as this

is the only case where the tracer distribution over the whole domain is used,

thus including those regions characterized by very low tracer concentration.

The Gain for CC, i.e. for information limited to the concentration inside

the patch, is shown by the red lines in Fig.5. The curves show a behaviour

qualitatively similar to the one for CA (blue lines) for small ∆tobs, with

maximum values slightly lower, as can be expected given that the information

is degraded with respect to that case. As expected from the above discussion,

for ∆tobs > 0.25 days, the overflow occurred for CA does not happen for CC,

and the Gain tends to progressively decrease at increasing ∆tobs. For realistic

∆tobs for satellite data (of the order of 1-2 days), the Gain is of the order of

40-50% for the concentration and 25-35% for the velocity.

Finally, the Gain for CB, i.e. for data on the patch boundary only, is

depicted by the green lines in Fig.5. Its dependence for the concentration on

∆tobs is even weaker than for CC, while for the velocity the Gain appears
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quite low for small ∆tobs, reaching its maximum at around 0.2 days. This is

likely due to the fact that the spatial information is degraded (and reduced

to one gradient only, along the boundary of the patch), so that the advection

velocity is not easily estimated at small ∆tobs. The value ∆tobs ≈ 0.2 days

corresponds to the longest interval that can be used to estimate velocity

without violating the CFL criterion. The values of the Gain for ∆tobs of

1-2 days is of the order of 15-25% for the concentration and 20-25% for the

velocity.

4.2. The VAR experiments: sensitivity to flow variability

The VAR experiments illustrate the dependence of the estimates on time

and space variability of the flow field. Estimates for 20 different realizations

(10 release locations and two flow fields) have been computed for a realis-

tic value of ∆tobs = 1 day and for modalities CC and CB. The results are

summarized in Table 2 in terms of mean and standard deviation of the Gain

for velocity and concentration, computed over all the realizations and daily

values. As it can be seen, the mean values are similar for velocity and con-

centration, and range around 30-40% for CC and 15% for CB. The standard

deviations are quite high, approximately half of the mean for CC and almost

of the same order for CB. If we compare the mean values with the Gain

values for the BASE experiment for ∆tobs = 1 day (Fig.5), we can see that

the BASE values are higher than the means, but well inside the variability.

The high variability can be due to various factors. For the velocity, the

main factor is likely the initial position of the patch within the velocity

field in the Truth and in the Model. Since only the cross-component is

corrected by the method, the Gain is expected to be high mainly when the
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cross-component of the Truth and of the Model are significantly different.

For the concentration, since the patch evolution depends only on the cross-

component of the velocity, the main factors are expected to be the accuracy

with which this component is estimated by (5), (which in turns depends

on the estimates of the space and time derivatives (3)), and the pattern of

advection between successive corrections, i.e. during ∆tobs. In particular, for

∆tobs of the order of 1 day, if the estimated velocity has significant errors

the patch can be partially advected in an area different from the True patch.

When this happens, i.e. the estimated patch lies outside the True patch,

there will be no significant correction at subsequent times and the patch will

be lost, i.e. it will behave as if advected by the Model velocity only.

This effect is illustrated in the example shown in Fig.6, displaying concen-

tration and velocities for Truth (upper panels), Model (upper middle panels)

and Estimates for CC and CB (lower-middle and lower panels) after 3 days

for a release location in the northwestern area, at point (15,13). The blue

circles superimposed on the Truth and Model velocities indicate the initial

patch release, while the red lines superimposed on the estimated velocities in-

dicate the regions where the velocity correction is active at day 3, i.e. regions

with concentration greater than the cutoff ccutoff=0.1. The patterns of the

patch at day 3 are significantly different in the Truth and in the Model. The

Model patch is caught in a strong eastward jet, that advects it and elongates

it toward the east. This jet is not present in the Truth, so that the patch does

not move significantly and keeps closer to the northwestern corner. For the

CC estimate, a small part of the patch appears to have escaped eastwards,

outside the red line indicating the correction region. This effect is even more
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pronounced for CB, where the degradation in the velocity estimation causes

the concentration to move with the Model velocity well outside the region of

the True patch. This is reflected by the pattern of the estimated CB con-

centration, that shows significant corrections with respect to the Model in

the northwestern corner, while the eastern side is very similar to the Model

one. A different example of release is shown in Fig.7. In this case, both

the CC and CB modalities are able to maintain the estimated patch within

the correction region. The overall correction is very effective, as can be seen

comparing visually the estimated concentration and velocity fields with the

Truth and Model ones, in particular for CC, as can be expected.

4.3. The PATCH experiments: sensitivity to patch characteristics

The PATCH experiments are performed similarly to the BASE experi-

ments, but they consider different parameters characterizing the patch. In

all cases, the same release location and the same velocity field as in BASE

are used.

The first considered parameter is the cutoff value ccutoff used to define the

patch in modality CC and CB. In BASE the cutoff was set to ccutoff=0.1,

while here the value ccutoff=0.35 is also considered. This corresponds to

assuming that only higher intensities are detected by observations, so that

only the core of the patch is observed, and the patch itself appears smaller

(ccutoff=0.35 approximately corresponds to the green contours in Fig.4). A

set of experiments is performed in modality CB varying ∆tobs as in BASE.

The results in terms of Gain are shown and compared with the BASE results

in Fig. 8. The dashed (dotted) lines indicate the PATCH (BASE) results.

As can be seen they are qualitatively similar, aside from some differences for
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the concentration at small ∆tobs. Notice that the Gain metric is computed

as for BASE, i.e. computing (8) in regions with ccutoff > 0.1. If instead the

Gain is computed using ccutoff=0.35, then its values increase for the PATCH

experiment (solid line), reaching approximately 35-40% for ∆tobs = 1 day

for both concentration and velocity. These values are higher than the BASE

values even if computed using ccutoff=0.35 (not shown).

Overall, the results indicate that changing the cutoff value does not have a

strong effect on the Gain, especially when computed over the extended patch.

When the Gain is computed only on the core of the patch, an increase of

approximately 15-20% is registered.

The second parameter that is varied is the size of the initial patch, i.e. the

value of the Gaussian width R. In BASE, R = 2∆s, while here we also use

R = 1.2∆s. Smaller sizes are not considered since they could lead to numeri-

cal problems in the integration of the advection equation (1). Experiments in

the three modalities CA, CC and CB have been performed varying ∆tobs as

in BASE, and the Gain results are shown in Fig.9. The overall patterns are

similar to the BASE results in Fig.5, aside from the fact that the CB Gain

for the concentration decreases abruptly for ∆tobs > 1 day, while it keeps

relatively high for the velocity. We remark that the details of the curves

depend on the specific release location considered, and therefore cannot be

considered completely general. On the other hand, the effect appears suffi-

ciently strong to suggest that it might be generally significant. A possible

explanation for this result is that, since the patch is smaller, it is more prone

to the effects described in Section 4.2. When ∆tobs is long enough and the

advection velocity is not perfectly estimated, the estimated patch might be
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more easily lost, since the correction region is smaller. This would explain

why the Gain for the concentration decreases abruptly for long ∆tobs, while

the Gain for the velocity is maintained.

Finally, we consider the sensitivity to the details of the evolution of the

patch. In BASE, the patch was advected integrating equation (1) using a

third order upwind scheme. Here we consider a first order scheme, that is

expected to be significantly more diffusive (Durran, 1999). For such a scheme

the diffusivity can be estimated on the basis of the relationship (Kantha and

Clayson, 2000):

K =
1 − Cr

2
Cr

∆s2

∆t
, (9)

where

Cr = U
∆t

∆s
(10)

is the Courant number; for our parameters, K results of the order 600

m2/s, i.e. lower than, but not too far from, the mesoscale diffusivity drawn

from drifter data in the Mediterranean (1 ÷ 5 103m2/s, with a typical value of

3 103m2/s, see Falco et al., 2000; Gerin et al., 2007; Poulain and Zambianchi,

2007).

An example of the effects of higher diffusion is shown in Fig.10 where

the tracer concentration at day 3 is depicted for the Truth (left panel) and

the Model (right panel). A visual comparison with the corresponding BASE

results in Fig.4 clearly indicates that, while the patterns are similar, the

gradients are significantly smoother in PATCH (notice the scale difference
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between Fig.4 and Fig.10 to accommodate the fact that the maximum con-

centration is significantly lower in presence of strong diffusion).

The same set of experiments as in BASE has been performed, varying

∆tobs for CA, CC, CB. Conceptually, the comparison with the BASE results

is expected to serve two purposes. On one hand, it will indicate whether or

not there is a dependence of the results on the specific numerical scheme

used for advection. On the other hand, a more physical interpretation of the

results can be considered, indicating whether or not the method holds also

in presence of strong diffusivity. Notice that in the PATCH experiments the

strong diffusion is not directly considered in the estimation formulas (3) and

(5), that are kept the same as in BASE, i.e. with f = 0. In this sense, the test

corresponds to the realistic case where the estimate is performed assuming a

simple advective process, while the patch actually evolves in a more complex

way.

The results in terms of Gain for velocity and concentration are shown in

Fig.11, and they can be compared with the BASE results in Fig.5. A good

qualitative resemblance can be noticed, indicating that the method is robust

and provides correct estimates even in cases when the dynamics of the patch

is significantly different from pure advection. It is interesting to notice that

in the presence of diffusion (Fig.11) the method appears stable also for CA

up to ∆tobs ≈ 1.5 days, that is significantly higher than for BASE (Fig.5).

This suggests that smoothing the gradients tends to eliminate the instability

problems of the method, as can be expected.
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5. Summary and concluding remarks

In this paper, a recently proposed method (Piterbarg, 2009) has been

implemented and tested to estimate surface velocities in the ocean by fusing

information from satellite tracer data and from velocity model outputs. The

method is tested using synthetic data in the framework of the twin experi-

ment approach, using realistic velocity outputs produced by the operational

Mediterranean Forecasting System. The method is general and can include

the fate of the tracer, i.e. its physical and chemical transformation. The con-

figuration considered in this paper, though, is simple and corresponds to a

patch of tracer passively advected by the surface current. It can be regarded

as a first step towards approaching the practical problem of estimating the

advection field and the evolution of the concentration of a pollutant released

by a localized source, such as for instance an oil spill, using satellite data.

The tracer is observed with a temporal resolution ∆tobs and the data are

used to correct the velocity field. The patch evolution is then recomputed

using the estimated velocity, therefore improving the prediction of the tracer

concentration.

An extensive set of tests has been carried out and the performance of

the method has been quantified considering the improvement (Gain) of the

estimated fields with respect to the model fields. In the ideal cases when

concentration data are available over the whole region with a time resolu-

tion of the order of 1-2 hours, the Gain reaches values of 80-90% for the

concentration and 50-60% for the velocity, which are close to the theoretical

values for perfect data. In the more realistic cases of limited observations

and longer ∆tobs of the order of days, the Gain reduces. Various release loca-
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tions and two different velocity configurations have been considered, and the

mean Gain and its standard deviation have been computed for ∆tobs = 1 day.

The variability is found to be quite high, depending primarily on the initial

position of the patch within the velocity field, which in turns determines the

relative size of the cross- and along-gradient components of velocity and the

patch advective path during ∆tobs. The mean Gain for observations limited

to high values of concentration inside the patch reaches values around 30-40%

for both concentration and velocity. When only the boundary of the patch

is observed, the Gain further reduces, even though it keeps significant, with

values of 15-20% for velocity and concentration.

Further tests have been performed varying the parameters of the patch,

such as width and concentration cutoff, and considering deviations from the

purely advective evolution introducing a high numerical diffusivity, lower

than, but not too far from, mesoscale diffusivity observed in the Mediter-

ranean. In all these cases the results appear consistent, showing that the

method is robust. In particular, the results with high diffusivity suggest

that, even though the method is implemented assuming zero sources and

sinks, results actually hold for cases that significantly deviate from these as-

sumptions, such as possibly realistic cases where the patch might evolve in a

complex way.

In summary, the experiments cover an extensive parameter space in terms

of observation time intervals and modalities, as well as flow variability and

patch parameters. The results are very encouraging, indicating the potential

of the method for a number of practical applications. Oil spill detection from

satellite is presently carried out using mainly synthetic aperture radar (SAR)

29



and/or optical sensors (for a recent review of different techniques see Brekke

and Solberg, 2005). SAR sensors are currently hosted on a suite of different

platforms (ERS2, RadarSAT1 and 2, Envisat, ALOS, TerraSAr and COSMO

SkyMed); their revisit cycle is of the order of 3 days, but is expected to get

down to 1 day or less - considering, in particular, the capabilities of reori-

enting the SAR instrument on COSMO SkyMed missions so as to get more

frequent data coverage of a given region. Ocean color data utilizable for oil

spill detection are presently provided by MODIS instruments onboard the

EOS (Earth Observation Satellites) Terra and Aqua platforms, each offering

daily global coverage, which may be complemented by the Medium Resolu-

tion Imaging Spectrometer (MERIS) on Envisat satellites, characterized by

2-3 day revisit time, thus potentially offering, all together, two passages a

day during daytime in the case of clear sky conditions. The results of the

present investigation suggest that for these realistic ∆tobs a significant gain

can be obtained in the estimation of velocity and concentration.

It is worth adding that satellites currently provide information only on

the spill coverage, but there is ongoing research trying to identify also con-

centration levels inside the patch, in terms of oil thickness, at least from

aircraft-mounted sensors (hyperspectral passive imagery and laser induced

fluorescence are among the most suited ones, see, e.g., Lennon et al., 2006,

rather than microwave sensors, discussed among the others by Fingas and

Brown, 1997). Our results show that observations of tracer gradients inside

the patch (modality CC) can lead to a significant improvement with respect

to the observation of the boundary only (modality CB). Moreover, it is seen

that in the CC case decreasing ∆tobs can lead to significant improvements.
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We emphasize that the method is highly portable and computationally

efficient, making it very valuable in the framework of operational strategies

for rapid assessment and quick response. The present method has therefore

some significant advantages with respect to other techniques requiring com-

plete assimilation of the tracer information in the dynamical velocity models.

These techniques, even though more powerful, require significant coding and

computational time and they have to be set up in advance for the specific

operational model in use.

The present results can be considered as an important first step in the

investigation and application of the method. Future work is planned to gener-

alize the present results in various directions. First of all, the present results

specifically address the case of a tracer advected by mesoscale features. The

issue of small scales in space and time is not considered here, and will be

addressed in future works, still in the framework of the twin experiment ap-

proach, considering as Truth the results of a high resolution model in space

and time. The presence of small scales will likely imply a pre-processing of the

data, that will be smoothed at the scales of the Model in order to perform the

estimation, as is common practice in many satellite data analysis applications

(e.g., Reynolds et al., 2002; see also Rinaldi et al., 2009). A similar approach

has been followed also for Lagrangian data assimilation in the presence of high

frequency and small scale fluctuations (Taillandier et al., 2008). Another im-

portant point to consider is that the fate of the tracer is not considered in

this application. A theoretical analysis of the impact of a partially unknown

fate function for the estimation has been performed in Piterbarg (2009) and

tested using ideal perfect data. A further investigation is needed considering
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a more realistic setup to evaluate this effect for real data applications. Finally

it is important to notice that the present results are obtained using the twin

experiment approach. While the approach is very useful in providing quanti-

tative skill assessment, it is intrinsically limited by the fact that the synthetic

data are generated by models and therefore limited by the limitations of the

models themselves. Applications to real data are the next, necessary step,

and they will be carried out using historical oil spill data sets (see examples

of comparisons between observations and models in Al-Rabeh et al., 1992;

2000) and using results from a dedicated recent experiment performed in

the Mediterranean Sea in the framework of the PRIMI project (Santoleri

et al., 2009). A realistic oil spill model for the Mediterranean Sea, MED-

SLIK (http://www.oceanography.ucy.ac.cy/cycofos/medslik-act.html, Zodi-

atis et al., 2008), presently used as part of MFSTEP (Dombrowsky et al.,

2009), will be included in the tests.

As a final remark, we notice that, while the present work is focused on the

specific oil spill application, the method is general and future applications

can be targeted also to sea surface temperature or ocean color data sets. For

mesoscale applications, the requirements in terms of time and space sampling,

as well as the necessary coverage in terms of tracer gradients, are expected to

be similar to the ones considered in the present study. Different applications

targeted to more climatic studies can also be envisioned, considering lower

resolution data in space and time and smoother, general circulation velocity.

The main challenge in this framework might come from the correct knowledge

of the source and sink terms of the transport equation for the sea surface

temperature and for ocean color derived tracer fields.
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Exp x0 R(in ∆s units) ∆tobs(in days) Obs. modality ccutoff

BASE 1 location 2 0.01, 0.1, 0.2, 0.25, CA, CC, CB 0.1

0.5, 1.0, 1.5, 3.0

VAR 10 locations 2 1 CB, CC 0.1

PATCH 1 location 1.2 ÷ 2.0 0.01, 0.1, 0.2, 0.25, CA, CC, CB 0.1, 0.35

every 0.1 0.5, 1.0, 1.5, 3.0

Table 1: Characteristics and parameters of the different sets of numerical experiments (see

Section 3.3 for definitions)

Gain u (%) Gain c (%)

Observ. modality mean stand. dev. mean stand. dev.

CC 33 16 37 22

CB 14 10 14 10

Table 2: Means and standard deviations of the Gain for velocity and concentration for

the VAR experiments (∆tobs=1 day)
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Figure Captions

Figure 1 : Schematic illustration of the fusion method for the model

velocity estimate and tracer observations. Left panel: Multiple model output

(red points) and a poorly known forcing. The shaded area shows a confidence

region for the real velocity coming from tracer observations. Right panel:

Single model output and an exactly known forcing. The estimate is obtained

as projection of the model on the line.

Figure 2 : Domain of the experiments (blue rectangle) with an example

of MFS velocity output.

Figure 3 : Map of release locations for the VAR experiments superim-

posed to the Truth velocity field used in the following figures.

Figure 4 : BASE experiments. Right panels show the velocity field and

left panels the patch tracer concentration at day 3 for the Truth (upper),

Model (middle upper), Estimate in modality CA and ∆tobs = 0.1 days (lower-

middle) and ∆tobs = 0.25 days (lower). The blue circles superimposed on the

velocity fields indicate the initial patch releases.

Figure 5 : BASE experiments. Plots of Gain versus ∆tobs for velocity

(upper panel) and concentration (lower panel). Blue lines indicate results ob-

tained in modality CA, red lines in modality CC and green lines in modality

CB.

Figure 6 : VAR experiments. Right panels show the velocity field and

left panels the patch tracer concentration at day 3 for the Truth (upper),

Model (middle upper), Estimate in modality CC and ∆tobs = 1 day (lower-

middle) and Estimate in modality CB and ∆tobs = 1 day (lower). The blue

circles superimposed on the velocity fields indicate the initial patch releases,
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the red lines indicate the regions where the velocity correction is active at

day 3, i.e. regions with concentration greater than the cutoff ccutoff=0.1.

Figure 7 : VAR experiments. Right panels show the velocity field and

left panels the patch tracer concentration on day 3 for the Truth (upper),

Model (middle upper), Estimate in modality CC and ∆tobs = 1 day (lower-

middle) and Estimate in modality CB and ∆tobs = 1 day (lower). The blue

circles superimposed on the velocity fields indicate the initial patch releases,

the red lines indicate the regions where the velocity correction is active at

day 3, i.e. regions with concentration greater than the cutoff ccutoff=0.1.

Figure 8 : PATCH experiments with ccutoff=0.35 and modality CB.

Plots of Gain versus ∆tobs for velocity (upper panel) and concentration (lower

panel). Solid (dotted) lines indicate Gain values computed in the region with

concentration higher than 0.35 (0.1). Dashed lines show the BASE result for

comparison, computed with ccutoff=0.1.

Figure 9 : PATCH experiments with R = 1.2∆s. Plots of Gain versus

∆tobs for velocity (upper panel) and concentration (lower panel). Blue lines

indicate results obtained in modality CA, red lines in modality CC and green

lines in modality CB.

Figure 10 : Example of a PATCH experiment with higher diffusivity.

Patch tracer concentration at day 3 for the Truth (left) and Model (right).

Figure 11 : PATCH experiments with higher diffusivity. Plots of Gain

versus ∆tobs for velocity (upper panel) and concentration (lower panel). Blue

lines indicate results obtained in modality CA, red lines in modality CC and

green lines in modality CB.
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