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Keypoints:

The northern Gulf of Mexico surface velocity statistics are heterogenous, non-stationary,
non-Gaussian, and are a strong function of the feature sampled, topography, and the wind
forcing.

Large velocity variance, anisotropic surface velocity statistics, and horizontal diffusivity val-
ues of O(105) m2/s are observed at flow bifurcations.

Fast transport pathways exist between the northern Gulf of Mexico and the southern Gulf
of Mexico.



Abstract
The Grand LAgrangian Deployment (GLAD) used multi-scale sampling and GPS tech-

nology to observe time series of drifter positions with initial drifter separation of O(100 m)
to O(10 km), and nominal 5 minute sampling, during the summer and fall of 2012 in the
northern Gulf of Mexico. Histograms of the velocity field and its statistical parameters are
non-Gaussian; most are multi-modal. The dominant periods for the surface velocity field are
1-2 days due to inertial oscillations, tides, and the sea breeze; 5-6 days due to wind forcing
and submesoscale eddies; 9-10 days and two weeks or longer periods due to wind forcing and
mesoscale variability, including the period of eddy rotation.

The temporal e-folding scales of a fitted drifter velocity autocorrelation function are
bimodal with time scales, 0.25-0.50 days and 0.9-1.4 days, and are the same order as the
temporal e-folding scales of observed winds from nearby moored National Data Buoy Center
stations. The Lagrangian integral time scales increase from coastal values of 8 hours to
offshore values of approximately 2 days with peak values of 3-4 days. The velocity variance
is large, O(1) m2/s2, the surface velocity statistics are more anisotropic, and increased
dispersion is observed at flow bifurcations. Horizontal diffusivity estimates are O(103) m2/s
in coastal regions with weaker flow to O(105) m2/s in flow bifurcations, a strong jet, and
during the passage of Hurricane Isaac. The Gulf of Mexico surface velocity statistics sampled
by the GLAD drifters are a strong function of the feature sampled, topography, and wind
forcing.
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1 Introduction

The surface velocity field offshore of Louisiana, Mississippi, Alabama, and Florida in the
northern Gulf of Mexico (GoM) is of great practical and scientific interest for a number of
reasons including the offshore oil industry, heavy shipping due to its proximity to the Missis-
sippi River, its influence on weather, especially hurricane development, and coastal regions of
hypoxia. The Loop Current, Loop Current rings, and mesoscale eddies are the dominant flow
features offshore of the continental shelf (Sturges and Lugo-Fernandez, 2005; Sturges and
Kenyon, 2008). These large flow features have been extensively documented because they
are seen in satellite-based sea temperatures, altimetric, and ocean color measurements. It is
evident in these observations that the mesoscale eddies influence the flow on the continental
shelf.

A very large experiment consisting of 750 ARGOS-tracked CODE-like drifters drogued
at a nominal depth of 0.5 m, was conducted over a six year period from 1993 to 1998. The
drifters were deployed in different regions of the northern GoM: Louisiana-Texas shelf; the
Mississippi delta region; and Florida’s Big Bend region of the northern GoM shelf as part of
the Surface CUrrent and Lagrangian drift Program (SCULP; Ohlmann and Niiler, 2005) in
order to learn about the shelf circulation. Some of the primary results from SCULP are that
the flow on the shelf is forced by synoptic scale weather systems, has a seasonal component,
and eddies are important for cross-shelf transport. DiMarco et al. (2005) analyzed 1397
drifters in the GoM that were mostly drogued at 50 m and found that the flow is highly
variable over most of the GoM, and that there is a strong seasonal signal in the western GoM
due to changes in wind stress. These studies suggest that the average surface velocity field
in the northern and western GoM is primarily determined by the winds, while the average
surface velocity in the eastern GoM is set by the Loop Current system. At the boundaries
of these regimes, such as the continental shelf in the northern GoM near the DeSoto canyon,
the surface velocity is a function of both wind forcing and the energetic eddy field associated
with the Loop Current system (Carnes et al., 2008).

Average surface velocity fields, as well as the dispersion quantities estimated from ve-
locity data, are important for search and rescue operations performed by the U.S. Coast
Guard, modeling the dispersion of fish larvae from spawning sites of large pelagic fish, and
predicting the spread of pollutants. For example, following the tragic Deepwater Horizon oil
rig explosion on April 20, 2010, oil gushed from the bottom of the GoM at a depth of 1500 m,
latitude 28.74◦ N and longitude 88.32◦ W, for 87 days before it was capped. The oil surfaced
and was transported and dispersed onshore and offshore from its release location by variable
winds, waves, and the energetic flow field. The surface distribution of oil was driven by
coastal to ocean dynamics that varied from slow flow to strong energetic eddies. Predictions
of oil spreading were used to target the response to minimize the spill’s impact, especially
near the coast. Large deviations between predicted and observed oil locations indicated
that sufficient real-time, high-resolution velocity data, and better model parameterizations
of turbulent processes at small scales would both be needed for better oil spreading forecasts
(Mariano et al., 2010). These parameters vary both spatially in the northern GoM, and tem-
porally due to the variability in atmospheric forcing, especially during strong atmospheric
events, such as the passage of fronts and hurricanes. Reliable estimates of turbulent disper-
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sion parameters for a broad-band energetic, highly variable geophysical flow field require a
large amount of high-resolution data.

CARTHE, the Consortium for Advanced Research on the Transport of Hydrocarbon in
the Environment funded by the Gulf of Mexico Research Initiative, conducted a targeted
experiment in July 2012, guided by data-assimilative ocean forecast models (Jacobs et al.,
2014; Coelho et al., 2015), real-time hydrography, and satellite images, and a suite of upper
ocean measurements (Özgökmen et al., 2014) that included over 300 drifters of various
designs. 297 CODE-style drifters (Davis, 1985), that are 1m tall and 1m wide comprised of
orthogonal sails that extend radially in four directions and span the water column between
0.2 and 1.2 m, were deployed around the site of the DWH spill in the DeSoto Canyon in
the northern GoM (Fig. 1). This Grand LAgrangian Deployment (GLAD) used multi-scale
sampling and GPS devices manufactured by SPOT technologies to observe a time series
of drifter positions at very high spatio-temporal resolution. It was designed to estimate
dispersion statistics, resolving both submesoscale and mesoscale motions through deployment
stencils sampling horizontal scales from 100 m to 10 km (Fig 1), with a nominal temporal
sampling resolution of five minutes. A detailed analysis of the surface velocities and related
transport using a blend of drifter and altimetric-based velocity estimates for the GLAD
experiment is discussed in Berta et al. (2015) and Olascoaga et al. (2014), and the relative
dispersion statistics calculated from the GLAD drifters are the primary focus of Poje et al.
(2014).

The focus of this paper is the spatial variation and distribution of the basic statistics
of the horizontal (zonal, meridional) velocity field V(x, y, t) = (u(x, y, t), v(x, y, t)) derived
from the positions Xi(t) = (xi(t), yi(t)) from drifters i = 1, 2 . . . , n = 297. The fundamental
velocity statistics calculated for each GLAD drifter and for each velocity component are the
mean flow and its temporal variance, Lagrangian velocity autocorrelation function and its
e-folding scale, dominant period of motion, integral time scale, and horizontal diffusivity. It
is assumed that the mean flow changes linearly in time over each data segment and that
the second-order statistics are stationary for one month. This assumption is most suspect
for data segments that include trajectories in the path of Hurricane Isaac. Spatial maps of
the estimated statistics for our study region are presented. The frequency distribution of
the primary statistical parameters of the surface velocity field are tabulated, yielding insight
into the prior probability density functions needed for Bayesian-based analysis and data
assimilation methods. The temporal variation of absolute dispersion is also calculated for
four sets of drifter clusters. The source and processing of the data are described in section
2, the estimation methodology is described in section 3, the resulting estimates are shown
and discussed in section 4, and concluding remarks are given in section 5.

2 Data

The primary Lagrangian component of GLAD consisted of 297 GPS-equipped, CODE-style
drifters with a nominal position accuracy of 5 m, transmitting every 5 to 15 minutes with near
real-time data delivery, and a nominal battery life that exceeded two months (Özgökmen,
2012). Other drifters with different designs were also deployed, but they were not included
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in this analysis. GLAD drifters were deployed from July 20 to July 31, 2012 during the same
season as the latter portion of the DWH event, which was active from April 20th to July 15th,
2010. Two sets of 90 drifters each arranged in an S pattern were released offshore of the shelf
break in the region near the DWH site (Fig. 1). The S track consisted of 10 nodes spaced at 2
km, with each node containing nine drifters deployed in three 500 m equilateral triangles with
drifter triplets launched at a nominal 100 m separation. These drifters were deployed in two
regions, S1 and S2, that spanned 8 by 10 km. Other drifter deployments included an initial
larger-scale survey and two multi-scale, nodal deployments; the T deployment that targeted
cross-shelf transport near the northern tip of the DeSoto Canyon with drifter nodes deployed
along a triangular-shaped pattern, and the L deployment sampling a strong cyclone in deeper
water (Fig. 1 middle). The choice of sampling pattern was guided by numerical simulations
using data-assimilative models (Jacobs et al., 2014; Özgökmen et al., 2014). Drifters were
launched from the R/V Walton Smith and two small boats allowing the deployment of 90
drifters in a span of five hours. This deployment pattern of a large scale survey and different
deployments of tight clusters allowed simultaneous sampling at multiple separation scales,
initially on the order of 100 m to 10’s of km, which then permitted sampling of different
dynamical features.

Besides occasional bad data transmission due to weather and shipping traffic, there were
a few drifters abducted by boaters in the region and some of these were redeployed yielding
some very large observed velocities due to the ten to twenty knot boat speeds. The raw data
were edited and the trajectories were filtered using the techniques described by Yaremchuk
and Coelho (2015) yielding a three months long data set with a temporal resolution of
fifteen minutes. The estimated velocity error is a few cm/s (Yaremchuk and Coelho, 2015).
The filtering preserves the energy for periods of one hour and greater. The data density
starts with 289 drifters from the last week of July, 2012 available for our analysis. 130
drifters lasted at least two months, surviving the passage of Hurricane Isaac through the
area during August 27-29, 2012. The dispersion of the GLAD drifters over the next three
months provided five million position data points that spanned submesoscale and mesoscale
dynamics yielding unprecedented statistics of the surface velocity field, absolute dispersion,
and relative dispersion over a broad-band of energetic scales (Poje et al., 2014).

A spaghetti plot of the GLAD drifters (Fig. 1 top) contains a densely sampled area
near and offshore of the 300-m isobath. Visual inspection of trajectories confirms that the
drifters sampled inertial motion especially along the shelf break, submesoscale and mesoscale
eddies, the background flow, and a southeast/south energetic jet in the region that spans
from the coastal zone to the deeper central GoM. About 20 drifters left the primary study
region and dispersed widely. A dozen drifters visited water depths shallower than 300 m
near the Yucatan Peninsula, suggesting a very efficient pathway from the northern GoM
to the Yucatan Shelf created by the mesoscale eddies and the southeast/south jet. Similar
pathways connecting the northern GoM with deeper waters have been found in numerical
models (Toner et al., 2003), altimetry products (Berta et al., 2015), and satellite images of
chlorophyll plumes (Toner et al., 2003). Typically, the efficient pathways are created by a
combination of strong dynamical features.
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Figure 1: The top panel is a spaghetti plot of the GLAD drifters used in this analysis.
The black lines are the GLAD drifter trajectories that are mostly two to three months
in length. The 300-m isobath contour is shown as a dashed line, land and the launch
locations, primarily offshore of 300-m depth and near 89◦W, 28◦N, are plotted in shades
of grey for the northern GoM. The coastline of Louisiana, Mississippi, Alabama, and
the western Florida “panhandle and Big-Bend region” are visible in the north, as well
as parts of western Cuba in the southeast corner of the plot. The middle panel shows
the details of the survey launches, S1, S2, L, and T deployments with larger diamonds
implying nodes. The inset is the deployment pattern of the nodes consisting of 3
sets of triplets spaced 500 m apart with 100 m spacing for the triplets. The average
position for all of the 31 day data segments used for analysis are plotted in the lower
panel.
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2.1 Lagrangian-based statistical analysis

The large geographic region that was sampled along with the range of characteristics of the
observed trajectories suggest that the velocity statistics will also have considerable varia-
tions. Any estimation method needs to preserve this large variability and not reduce it by
Eulerian-based averaging of heterogenous dynamical features (Mariano and Chin, 1996). A
Lagrangian-based approach, where all of the estimated quantities were calculated from seg-
ments of the position and velocity time series for each drifter, was adopted for this study.
The length of the data segments used for estimation is a classic variance-resolution trade-off.
LaCasce and Ohlmann (2003) used 25 days in their analysis. Here 31 days was selected,
balancing the need for enough data in time to reliably estimate the autocorrelation function,
and the need for sufficient distinct data segments to provide adequate spatial resolution for
the maps shown below. The arithmetic average of the longitude and latitude positions for all
of the 31 day segments are plotted in the bottom panel of Fig. 1. LaCasce and Ohlmann’s
choice of 25 day was selected for drifters that were, on the average, closer to shore with
shorter time scales than the GLAD drifters. Correlation functions estimated using 15-, 20-,
and 25-day segments were noisy, and the resulting estimates of correlation parameters con-
tained a number of obvious outliers. Correlation functions estimated from 31-day segments
were less noisy and contained fewer outliers. Each drifter trajectory was segmented into a set
of six overlapping 31 day time windows, given as 2012 year day/date: (204/Jul 22, 234/Aug
21); (219/Aug 6, 249/Sep 5); (234/Aug 21, 264/Sep 20); (249/Sep 5, 279/Oct 5); (264/Sep
20, 294/Oct 20); and (279/Oct 5, 309/Nov 4).

The average values (Fig. 2 bottom), standard deviations, and autocorrelation functions
of the u and v velocity components were estimated from each 31-day data segment and for
each drifter. The dominant period, temporal e-folding scale, integral time scale, velocity
variance, and the total horizontal eddy diffusivity were calculated as described in the next
section. The resulting estimates were placed at the arithmetic average calculated from all of
the longitude and latitude positions for that time segment in order to produce spatial maps
of the dominant statistical parameters of the surface velocity field. Bicubic splines were used
to spatially interpolate the irregular distributed estimates.

The drifter trajectories were also segmented into a set of overlapping 10-day time windows
(overlap is 5 days) in order to produce another set of mean velocity estimates that better
resolve the mesoscale flow features (Fig. 2 top). Spatial maps of the average velocities
estimated during the GLAD experiment exhibit distinct flow regimes. There was a slow
mean flow in the coastal regions, an energetic jet with mostly southward transport centered
along 87◦W and south of 27◦N, the Loop Current just north of Cuba, and strong westward
flow offshore of the shelf break west of 91◦W due to a Loop Current Eddy (Figs. 2 and 3
top). Average surface velocities ranged from 0.2 m/s on the shelf to O(1 m/s) in the deeper
waters. This is consistent with a summertime (July, August, and September) climatological,
Eulerian average of archived near-surface drifters data from the Global Drifter Database
(Lumpkin and Pazos, 2007) (Fig. 3 bottom) from the years 1996-2013.

Stronger flow features are more evident in the estimates produced by a new data blending
technique (Fig. 3 top) that reduces the smoothing inherent in averaging methods (Fig. 2).
This technique uses 1-D functions to account for cross-stream variations of the mean flow
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Figure 2: Lagrangian estimate of the average surface velocity during the GLAD exper-
iment in the northern Gulf of Mexico using (top) 10-day data segments and (bottom)
31-day data segments. The 200 m, 300m, and 2000 m isobath contours are also plotted.
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Figure 3: (Top) Average velocity from the same GLAD drifter data used in Fig. 2, but
based on a new localized, minimum-variance, adaptive coordinate system blending
technique (see text). The symbols A, B, C, D, E, and F indicate regions of flow bifur-
cations. (Bottom) Climatological average velocity from the Atlantic Oceanographic
and Meteorological Laboratory (AOML) archived near-surface drifters for the summer
months July, August, and September, and for the years 1996-2013. The 200 m, 300m,
and 2000 m isobath contours are also plotted.
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structure within each bin, whose advantage relative to 2-D methods (e.g. Bauer et al.,
1998; Lumpkin and Johnson, 2013) lies in the fact that the fitting operation requires the
determination of a smaller number of parameters. Specifically, for the GLAD observations,
subsets of the velocity measurements were first selected within circular spatial bins with
0.5◦ radius centered on the grid points of a regular 0.25◦ × 0.25◦ Eulerian grid. The local
Cartesian coordinate system was rotated in small angle increments about the data centroid.
At each angle, fifth-degree 1-D polynomials were separately fitted to the velocity component
aligned with the rotated x-axis. The respective fitting errors were calculated. Estimates of
the mean u and v velocity structure were retrieved at the angle where the fitting error is
a minimum. For mapping purposes, the 1-D velocity estimates obtained from all bins were
interpolated using bicubic splines to a 0.125◦ × 0.125◦ grid.

As expected the details of the average velocity maps differ between the different aver-
aging methods. Nevertheless, in all of the maps a strong southward flow, eddies, and flow
bifurcation are present. The strong southward flow observed during GLAD extends over
a much larger area than climatology. Also, between approximately 88◦W to 85◦W, 26◦N
to 28◦N there is a cyclonic circulation in the GLAD estimates that is more energetic than
the cyclonic circulation in the climatology. The Loop Current was not in its climatological
position during the GLAD experiment (or during the 2010 DWH oil spill). Evident in all
of these mean velocity maps are regions of flow bifurcations. Flow bifurcations are defined
here simply as regions where an organized flow splits into two branches.

3 Estimation Methodology

Different methods have been used for the estimation of integral time scales and diffusivity
from ocean drifters and floats because of the bias-variance tradeoff inherent in using sparse,
noisy, and aliased data from a heterogeneous and non-stationary turbulent velocity field
(Davis, 1987; Zhurbas and Oh, 2003; Sallée et al., 2008; De Dominicis et al., 2012; Klocher
et al., 2012; Chiswell, 2013). The approach adopted here is Lagrangian in nature and
parsimonious in the sense that the Lagrangian velocity autocorrelation function is computed
by assuming a simple correlation function for each velocity component u and v with just
two important parameters; a zero-crossing scale to represent the dominant wave motion and
an e-folding scale to parameterize the turbulent component of the flow (Mariano and Chin,
1996). The major disadvantage of our approach is that it is not optimized to remove the
effects of horizontal velocity shear that significantly contributes to any measure of particle
separation.

An autocorrelation function of the following form is assumed,

C(τ) = a1 cos
(

2πτ

a2

)
e
−
(
τ
a3

)2

, (1)

where τ is the temporal lag. The correlation parameters are a1 = 1− ε, where ε = σ2
n

σ2
u

is the

error due to sensor and subgrid scale variability σ2
n that results from finite spatio-temporal
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sampling normalized by the velocity variance σ2
u ; a2 is the dominant period associated with

wavelike and other periodic motion; and a3 is the temporal e-folding scale associated with
turbulent motion. This correlation model does not capture the diurnal variability, due to
inertial and tidal motion, seen in the estimated correlation functions (Fig. 4). This is not a
serious error since the integral of the velocity autocorrelation function for simple oscillatory
motion is zero. A more detailed look at the estimation of integral time scales and diffusivity
is planned for the future incorporating other data sets and estimation methods.

A feature-based approach (Mariano and Chin, 1996) to parameter estimation is used to
calculate the dominant period seen in the autocorrelation function and the temporal e-folding
scale. The autocorrelation function with the estimated parameters is integrated to calculate
the integral time scales. The following description is for the u velocity component, but the
method applied to the v velocity is identical. Since the number of data values is finite,
Eqn. (1) is discretized. C(τ) is estimated by Ĉ(τk) at the kth temporal lag bin, τk = 15k
minutes, k = 0, 1, . . . , 2880 for each data segment from each drifter. The correlation function
is symmetric, C(τi) = C(−τi), thus only zero and positive discrete lags are considered. A
total of 2881 temporal lags are calculated ranging from zero to thirty days. Data pairs, from
all times i and j in each data segment, ui and uj are sorted into temporal lag bins τk, then
〈(ui−〈ui〉)(uj −〈uj〉)〉, 〈(ui−〈ui〉)2〉, and 〈(uj −〈uj〉)2〉 are calculated for each temporal lag
k = 15|i− j| minutes. The standard arithmetic average is used for calculating the expected
value of the covariances and variances.

The discrete autocorrelation and cross-correlation estimates are

Ĉuu(τk) =
〈(ui − 〈ui〉)(uj − 〈uj〉)〉

(〈(ui − 〈ui〉)2〉〈(uj − 〈uj〉)2〉)1/2
, (2a)

Ĉvv(τk) =
〈(vi − 〈vi〉)(vj − 〈vj〉)〉

(〈(vi − 〈vi〉)2〉〈(vj − 〈vj〉)2〉)1/2
, (2b)

Ĉuv(τk) =
〈(ui − 〈ui〉)(vj − 〈vj〉)〉

(〈(ui − 〈ui〉)2〉〈(vj − 〈vj〉)2〉)1/2
. (2c)

Ĉvu(τk) =
〈(vi − 〈vi〉)(uj − 〈uj〉)〉

(〈(vi − 〈vi〉)2〉〈(uj − 〈uj〉)2〉)1/2
. (2d)

The choice of what mean velocity (〈ui〉, 〈vi〉) to use in the calculation of the correlation
function needs to be made. Choices include (1) using climatological averages for the region,
(2) calculating a constant average for each segment of drifter data,(3) fitting a linear temporal
trend to the data segments, or (4) using a spatially-dependent mean velocity field (e.g. Figs.
2 and 3). The question of stationarity of the velocity field and the effects of smearing an
Eulerian-based average (Mariano and Chin, 1996) rule out choice (1). Most importantly,
the climatological near-surface velocity field for the summer months of July, August, and
September (Fig. 3) does not resemble the flow field during GLAD enough (Figs. 2 or 3).
The desire to keep the entire estimation procedure in the Lagrangian framework and the
principal of parsimony rule out choice (4). The principal of parsimony argues for either a
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one parameter model for the mean, such as the simple arithmetic average, or a two parameter
model such as a linear trend in time.

A least-squares fit of a linear, temporal trend to each data segment is used for calculating
the expected value of u and v for the following reasons. First, the drifters sampled different
dynamical regimes and experienced different wind forcing during the 31-day time segments,
so their velocity statistics are not constant. Second, the method has already been used
and successfully tested in Garraffo et al. (2001), with an extensive analysis of both real and
simulated trajectories. Finally, there are more statistical outliers in the estimated correlation
parameters when using the simple arithmetic average as the mean.

The correlation parameters are estimated from Ĉ(τk) for each drifter and for each time
segment using the contour analysis approach (Mariano and Chin, 1996): â1 is the estimated
correlation at zero lag whose value is determined by subgrid-scale variability; â2 is the
dominant period and is estimated by finding the zero-crossing scale, the lag where Ĉ(τk) is
zero, and multiplying it by four; â3 is first estimated using the lag where Ĉ(τk) equals â1

e

and is then corrected using the â2 value. Given the high temporal resolution of the GLAD
drifters, that the data are filtered to remove noise for time scales less than one hour and
are resampled to 15 minutes during pre-processing, â1 is estimated to equal one for all data
segments.

The estimated statistics for each data segments are placed at the arithmetic average of
the positions for that segment (Fig. 1 bottom). These spatial estimates are smoothed and
interpolated using bicubic smoothing splines (Inoue,1986) to produce spatial maps. Standard
deviations of all the estimated quantities are calculated for each data segment and are used
as weights for the smoothing splines. The tensions of the splines are set high in order to
allow reliable extrapolation in relatively data-sparse regions (Inoue, 1986). The estimates at
the boundary of the maps and in the regions with the lowest data density have the largest
mapping error, and the trends at the boundaries may not be significant.

4 Results

GLAD drifter 218 exemplifies a drifter that travelled from the shelf break into the deeper
GoM and sampled different dynamical features. Deployed on July 29, it was slowly advected
to the southwest with very strong inertial motion evident in the trajectory during the first
19 days and in the velocity cross-correlations that contain a strong oscillatory signal with a
one-day period (Fig. 4). After day 20, the drifter was located in a cyclonic eddy, and by day
49 it ended up in a strong jet near 87◦ W and 26◦ N (Figs. 2 and 3). Also evident in this
trajectory is the increased inertial motion between days 30 and 33 due to Hurricane Isaac,
that made landfall on Aug 29th, day 31, at Port Furchon, Louisiana. The horizontal velocity
autocorrelation and cross-correlation functions for the first and last 30 day segments indicate
strong nonstationary statistical behavior. Many of the GLAD drifters had similar looking
autocorrelation and cross-correlation functions. Different Lagrangian velocity correlation
statistics for the different monthly data segments are observed in most of the GLAD drifters
due to sampling of different dynamical regimes as well as the temporal variations induced
by large changes in wind forcing.
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Figure 4: The top panel is the 85 day trajectory of drifter 218 deployed on July 29,
2012 near the shelf break. It sampled different dynamical regimes from slow flow
dominated by inertial motion near the shelf break to faster mesoscale flow in the
deeper Gulf of Mexico. The dots are plotted daily, and the number denotes days since
deployment. The 200 m, 300 m, and 2000 m isobath contours are also plotted. The
9 black squares are the locations of the National Data Buoy Center (NDBC) moored
stations. The Deepwater Horizon site is denoted by the black-white circle. Below
the trajectory plots are the horizontal velocity autocorrelation (middle) and cross-
correlation functions (bottom) for two different 30-day segments for u and v. Drifter
218 velocity autocorrelation and crosscorrelation are calculated for the first 30 days
of the trajectory in the middle panel, while the lower panel is for the last 30 days of
the trajectory. The solid and dotted lines in the upper part of the middle and lower
panels are Ĉuu and Ĉvv, respectively. The solid and dotted lines in the lower part of
these panels are Ĉuv and Ĉvu, respectively.
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4.1 Observed flow and its variability

The dominant surface flows include inertial motion, tides, submesoscale eddies, a strong
southerly jet, shelf waves, and mesoscale cyclonic and anticyclonic eddies. The Loop Current
was in its southern mode (Schmitz, 2005) with most of its flow from the Yucatan Current
directly feeding the Florida Current north of Cuba in the Florida Straits. The flows sampled
by the GLAD drifters varied significantly over the region with slow flows near the shelf;
energetic cyclonic (anti-clockwise-rotating) and anticyclonic (clockwise-rotating) eddies, and
a strong southward jet (Figs. 2 and 3). Many of the drifters were entrained into the jet or
one of the eddies. The jet is observed directly by drifters and indirectly in satellite images
(Berta et al., 2015) between 88◦W and 87◦W and between 23◦N and 27◦N. The jet was found
between the eastern edge of a recently detached anticyclonic Loop Current Eddy and the
western edges of two cyclonic eddies that were primarily east of 87◦W. The jet constitutes a
very efficient path connecting northern GoM water to the waters of the Yucatan shelf. The
interactions between these eddies produced strong flow bifurcations near 24◦N, 87◦W (E in
Fig. 3), and 26.5◦N, 87.5◦W (B in Fig. 3). The northern cyclone interacted with a weak
inshore anticyclonic eddy producing another flow bifurcation near 28◦N, 86.5◦W (A in Fig.
3). The southern cyclone interacted with the Loop Current producing flow bifurcation near
23◦N, 86◦W (F in Fig. 3). Unpredictable Lagrangian motion, large velocity variance, and
large velocity shear were observed at the flow bifurcations. The location of the bifurcation
points change with time and exact determination is not trivial, so the locations given are
approximate, nominal locations. It should be noted that most of the westward flow in the
velocity maps (Figs. 2 and 3) west of 89◦W results from interpolating just ten drifters (Fig.
1) that span about 700 km in latitude.

Histograms of the 31-day average velocity estimates for all drifters and overlapping time
segments were calculated for both velocity components and for speed (Fig. 5). The his-
tograms would probably be different for a different experiment, especially at another time
of the year, and that the histograms would have larger variance if the averaging interval is
reduced. Typical average speeds were 5 to 10 cm/s corresponding to a mean transport on the
order of 100-200 km/month. Faster average speeds (30-50 cm/s) were calculated for about
7% of the 31-day data segments, all in the deeper waters of the GoM. The v histogram is
more symmetric and Gaussian-like than the u histogram, which exhibits bimodal behavior.
There is a net southward movement of the drifters on the order of 5 cm/s because of the
contribution from the strong southward jet sampled by the GLAD drifters, and a smaller
contribution due to the influences of the Mississippi River outflow, and Ekman transport
from the observed winds, from nearby NDBC buoys, that had a mean westerly (winds blow-
ing from west to east) component during the experiment. The secondary peak at 10 cm/s
in the u histogram is due to the large number of drifters that sampled the flow denoted by
B-C-D in figure 3, while the smaller peak at -10 cm/s is due to a smaller number of floats
sampling the flow west of E in figure 3.

The maps of standard deviations of the velocity components (Fig. 6) broadly show
larger values in deeper water than in the coastal regions. Peaks in standard deviation, which
exceed the typical values by almost a full order of magnitude, are associated with the strong
mesoscale eddies. Lagrangian Stochastic Models (LSMs; Griffa, 1996; Piterbarg et al., 2007),
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Average zonal velocity for 31 day drifter segments-m/s 

Average meridional velocity for 31 day drifter segments-m/s 

Average speed for 31 day drifter segments-m/s 

Figure 5: Histograms of the 31-day average (top) u, (middle) v velocity components,
and (bottom) speed for all samples in m/s. The vertical axis is the percentage of
samples in each bin.
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m/s

m/s

Figure 6: Maps of the (top) u and (bottom) v standard deviation in m/s for the GLAD
drifters.
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that are used to represent unresolved scales for predictions of particle motion in a fluid, will
need to account for this difference in velocity variance in order to achieve the most accurate
representation of sub-grid scale variability (Ohlmann et al., 2012).

4.2 Dominant period and e-folding scales

The histograms of the dominant periods (a2 in Eqn. 1) for both u and v are multi-modal
(Fig. 7). The estimates cluster around 1-2 days, 5-6 days, 9-10 days, 13-14 days and longer.
Anderson and Sharma (2008) analyzed GPS-tracked drifters in the northern GoM and found
strong inertial motion with inertial periods ranging from one day at 30◦N to almost 1.5
days at 20◦N. Their estimated near-inertial variance reached a maximum in June, and was
strongest during the summer when the mixed layer is the shallowest. Ohlmann and Niiler
(2005) found a dominant period of 5-10 days for the surface velocity field based on an EOF
analysis of the SCULP drifters in this region. They concluded that this period is due to 5-10
day fluctuations in the wind field that result from the passage of synoptic weather events.
They found the strongest coherence between their measured currents and the observed winds
at a period of 5-6 days. On the other hand, a quick calculation shows that a submesoscale
eddy with an azimuthal speed of 0.2 m/s and a radius of 15 km has a 5-day rotational
period. This region contains energetic submesoscale eddies. Dominant periods between 8 and
16 days can also be associated with the rotational period of energetic mesoscale eddies that
populate this region and were sampled by the GLAD drifters. The dominant period observed
by an individual drifter is determined by the particular dynamical feature it sampled. The
nature of the dynamical features changes between near-coastal regions inshore and along the
shelf-break, and the deeper GoM.

The same correlation parameter estimation method was applied to hourly wind data from
eight NDBC stations in the northern GoM (a ninth station had large data gaps) for the same
time period as sampled by GLAD drifters (Fig. 4). There is only one station that exhibits
a one-day dominant period (for the zonal winds), presumable forced by the sea breeze.
This station is the closest to land near 94.5◦W, 29◦N (Fig. 4). The other NDBC stations
are too far from the coast to see a strong sea breeze signal. Our analysis indicates some
correspondence between the ocean surface velocity field and the wind’s dominant periods
between 5 and 16 days. Based on the analysis of GLAD drifters and other analyses (e.g.
LaCasce and Ohlmann, 2003; Ohlmann and Niiler, 2005; Anderson and Sharma, 2008) the
1-2 day dominant period can be associated with inertial oscillations, tides, and sea breeze.
Wind forcing and submesoscale motion can explain the 5-6 day dominant period. The 9-
10 day period, the two-week period, and longer periods are consistent with both mesoscale
variability, including the period of eddy rotation, and with the wind forcing.

The temporal e-folding scales for u and v are more bimodal with shorter time scales of
0.25 to 0.50 days and of 0.9 to 1.4 days (Fig. 8), corresponding to short time scales that
are submesoscale. Ohlmann and Niiler (2005) also found the dominant e-folding scales of
less than two days in the northern GoM. The dominant e-folding periods for the winds vary
between a few hours and less than two days, and some are anisotropic with smaller values for
the zonal component (Fig. 8). The e-folding scales for the zonal winds have a fairly uniform
distribution while the meridional wind’s e-folding scale distribution is peaked at one day.
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Dominant zonal period of GLAD drifters-days Dominant meridional period of GLAD drifters-days

Dominant zonal period of NDBC buoy winds-days Dominant meridional period of NDBC buoy winds-days

Figure 7: The top panels are the histograms of the dominant period, in days, of the
(left) u and (right) v velocity components for all estimates calculated from the GLAD
drifters. The vertical axis is the percentage of samples in each bin. The bottom
panels are the histograms of the 10 m (left) zonal and (right) meridional wind velocity
components dominant period calculated for 8 NDBC wind data sets for the same time
period.
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Dominant zonal e-folding scale of drifter velocity autocorrelation function—days Dominant meridional e-folding scale of drifter velocity autocorrelation function—days

Dominant zonal e-folding scale of wind autocorrelation function—days Dominant meridional e-folding scale of wind autocorrelation function—days

Figure 8: The top panels are the histograms of the dominant e-folding scales, in days,
of the (left) u and (right) v velocity component for all estimates calculated from the
GLAD drifters. The bottom panels are the histograms of the 10 m (left) zonal and
(right) meridional wind velocity components dominant e-folding scales, calculated for
8 NDBC wind data sets for the same time. The vertical axis is the percentage of
samples in each bin.
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Figure 9: The top panel is a plot of the dominant period ellipses, in units of days, for
both the u and v velocity components. The bottom panel is a plot of the dominant
e-folding scale ellipses, in units of days, for both the u and v velocity components.
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There is some limited correspondence between the estimated e-folding scales for the ocean
surface velocity field and for the observed winds. Thus, both sets of correlation parameters,
as well as the EOF analysis of Ohlmann and Niiler (2005), suggest the importance of synoptic
scale wind forcing to the Lagrangian velocity statistics of the surface ocean. On the other
hand, an analysis of the spatial maps of statistical properties of the surface velocity field
presented next, clearly shows the importance of topography for the flow statistics. Also,
the observed anisotropy in the e-folding scales of u and v is different between the ocean
currents and the wind, with larger zonal scales in the ocean that are closely aligned with the
topography.

The u and v correlation parameter estimates were smoothed and interpolated by bicubic
splines, and then combined into ellipses (Fig. 9). It should be noted that there is less data
(Fig. 1 bottom) near the boundaries of all the maps, and the estimated parameters there
are noisier than the estimates close to the deployment areas. The spatial maps of the u
and v dominant periods and e-folding scales all exhibit the same general trend of increasing
time scales from coastal to deep sea waters. The largest anisotropic behavior, exemplified by
elongated ellipses in Fig. 9, in the e-folding ellipses is in the region, 88◦W to 87◦W, 25.5◦N
to 27◦N (B in Fig. 3) which also exhibits the largest velocity variance (Fig. 6) associated
with flow bifurcation.The dominant period ellipses are more isotropic, (the ellipses are more
circular in Fig. 9), than the e-folding scales.

4.3 Integral Time Scales, Absolute Disperson, and Horizontal Dif-
fusivity

The starting point for the study of particle dispersion in a fluid is the seminal paper by Sir G.I.
Taylor (1921) who introduced the integral time scales Iu and Iv for a homogeneous/stationary
flow field as the integral of the velocity autocorrelation functions, Cuu, and Cvv.

Iu =
∫ ∞
0

Cuu(τ)dτ (3a)

Iv =
∫ ∞
0

Cvv(τ)dτ (3b)

A fundamental metric of oceanic dispersion, the horizontal eddy diffusivities, KH = (Ku,
Kv), are defined as

Ku =
d σ2

X(t)

2 dt
, (4a)

Kv =
d σ2

Y (t)

2 dt
. (4b)

The horizontal components of the absolute dispersion, σ2
X(t) and σ2

Y (t), are the variances
at time t of the particle position displacement data relative to the deployment position,
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(xi(0), yi(0)) for each drifter i calculated by averaging over n drifters in a cluster,

σ2
X(t) = (

n∑
i=1

(xi(t)− xi(0))2

n− 1
,
n∑
i=1

(yi(t)− yi(0))2

n− 1
). (5)

Total horizontal diffusivity is calculated as K = |KH| =
√
K2
u +K2

v .

The integral time scales, I, multiplied by the eddy kinetic energy or velocity variance, σ2
V,

are an estimate of the horizontal eddy diffusivities, KH, under Taylor’s assumptions,

Ku = σ2
uIu, (6a)

Kv = σ2
vIv. (6b)

The square root of the horizontal absolute dispersion σX =
√
σ2
x + σ2

y is expected to grow

linearly in time for the time period right after release, and for times greater than twice
the integral time scale, the growth in σX is proportional to the square root of time. These
relationships, derived by Taylor, have been observed within estimation error in a number
of analyses of Lagrangian ocean data (e.g. Zhang et al., 2001 and references therein), but
the simple mean flow and eddy decomposition inherent in Taylor’s analyses may not be
appropriate for flows with energetic motion across a broad-band of space-time scales or for
non-stationary flows (Riley and Corrsin, 1974).

Since twice the integral time scale is the time for velocity measurements to become in-
dependent, it is fundamental for estimating the effective degree of freedoms in a correlated
velocity data set, and for determining for how long a prediction of Lagrangian motion is
reliable. Integral time scales and the variance of the velocity field are also used to determine
the autoregressive parameters of Lagrangian Stochastic Models (LSMs; Griffa, 1996; Piter-
barg et. al, 2007) that are used to represent unresolved motion when predicting the motion
of a particle in a fluid. A survey of the literature, e.g. Swenson and Niiler, 1996; Zhang et
al., 2001; Lumpkin et al., 2002; Bauer et al., 2002; Zhurbas and Oh et al., 2003; Sallée et
al., 2008; De Dominicis et al., 2012; and Chiswell, 2013 reveals Lagrangian surface velocity
integral time scales on the order of one day or shorter in coastal water, and on the order of
2-4 days or more in most of the open ocean, with larger values of five days or more associated
with strong ocean currents, energetic mesoscale eddies, and the deeper ocean, where the time
scales can be on the order of weeks.

The best set of previous estimates of the integral time scales for the northern GoM is
from SCULP measurements (Ohlmann and Niiler, 2005). The tracking error is an order of
magnitude larger for ARGOS than SPOT. The nominal SCULP drifter temporal sampling
rate was 4-6 fixes per day, and 15 drifters were deployed within a 125 km2 region every week
or longer. From these drifters Ohlmann and Niiler (2005) estimated integral time scales
that ranged from 1.1 to 2.8 days depending on the region. The integral time scale for the
along-shore component was about twice as large as the integral time scale for the cross-shore
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days

Figure 10: Maps of the integral time scale, in days, of the (top) u and (bottom) v
velocity components.
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days

Figure 11: The top panel is a map of the ellipses of the integral time scale, in days,
for the surface velocity field in the northern Gulf of Mexico. The bottom panel is the
amplitude of the integral time scales, I =

√
I2
u + I2

v . Units are days.
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component for the shallowest regions along and inshore of the shelf break. The integral time
scales were isotropic at the offshore, deeper locations with an average value of 1.4 days.

The Lagrangian surface velocity integral time scales for u and v, estimated from the
GLAD drifters, increase from on and near-shelf values of 8 hours to offshore values of pri-
marily around 2 days and peak values at 3-4 days (Figs. 10 and 11). These values are
consistent with the previous estimates, although they exhibit a wider range. The integral
time scales for both velocity components show a topographic influence with smaller values
observed in shallower waters and larger values calculated in the deeper GoM (Fig. 10).
The spatial maps of the integral time scales for u exhibit a sharper gradient offshore of the
shelf break than the integral time scales for v. We speculate that a possible explanation for
this behavior is that the v velocity is forced primarily by the large-scale westerly winds in
this region via Ekman dynamics, while the u velocity is constrained dynamically to satisfy
continuity and potential vorticity constraints with a large topographic beta term along the
shelf break and in the DeSoto Canyon region. The combined integral time scale amplitudes,

I =
√
I2
u + I2

v , (Fig.11, bottom) exhibit a local minimum offshore of the shelf break, denoted
by the 200 m and 300 m isobaths in the DeSoto Canyon region, indicating relatively slow
dispersion. Local maxima in the integral time scales are found in the core of the strong ed-
dies, in the strong jet, and associated with the fast flow on the eastern boundary of the Loop
Current Eddy and on the western side of the southern cyclone. Besides the local minima
in the quiet zones and the local maxima in the energetic features, the integral time scale
ellipses (Fig. 11 top) are fairly isotropic with anisotropies mainly occurring in the fast flow
regions at the edges of mesoscale eddies.

Anisotropic integral time scale values are generally associated with the longitudinal cor-
relation function of the velocity field. Freeland et al. (1975) first showed that the scales
of the Lagrangian velocity longitudinal correlation function are larger than the transverse
correlation function in the ocean, a theoretical result for horizontally nondivergent fluid flow.
Ohlmann and Niiler (2005) observed anisotropic integral time scales for surface drifters on
and near the shelf in the northern GoM, in wind-driven flows steered by the topography. In
contrast, GLAD’s estimated anisotropic integral time scale values (Fig. 11) are primarily at
the same locations as the anisotropic temporal e-folding scales (Fig. 9) that are associated
with flow bifurcations. The e-folding scales are set by the broad-band turbulence of the
northern GoM observed by GLAD drifters, as is detailed in Poje et al. (2014), and are more
anisotropic near flow bifurcations.

The square root of the absolute dispersion was calculated for the four primary subsets of
the GLAD drifters (Fig. 12). S1 and S2 were the two multi-scale deployments of 10 clusters
of 9 drifters along an S-shaped ship track near the well site. The T deployment consisted of
27 drifters at the Northern tip of the DeSoto Canyon deployed along a triangular ship track.
The L deployment consisted of 60 drifters in two L-shaped patterns targeting a cyclonic
eddy. The effects of both flow bifurcations and Hurricane Isaac primarily caused these four
deployment clusters to disperse widely after one month, limiting the dispersion calculation.
The four different estimates of absolute dispersion all contain a strong diurnal signal, and
different amounts of eddy dispersion effects on the longer time scales.

The square root of the absolute dispersion estimates varied by a factor of 2-4 a few days
after launch due to the heterogeneity of the surface flow dynamics sampled by the GLAD
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Figure 12: The top panel is the square root of the absolute dispersion, in units of km,
of the four major launches, each denoted by a different color, as a function of launch
date. The bottom panel is the same as the top panel but as a function of days after
launch. The bottom panel also shows the square root of absolute dispersion for all
drifters in black. The effects of Hurricane Isaac that was in the area Aug 27-29th is
evident in the absolute dispersion estimates.
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Figure 13: The top panel is the horizontal diffusivity K, in 103 m2/s, as a function of
time after deployment in days for the primary drifter clusters. Note that the smallest
and largest values fall outside the axis limits here. The minimum and maximum values
of K are from cluster L and are -110 × 103 m2/s and 360 × 103 m2/s, respectively. The
dots show the horizontal diffusivity calculated by Taylor’s method as described in the
text. The solid line in the bottom panel is a spline-smoothed version of the ALL curve
from the top figure on a log scale. The dots are an average of all of the Taylor-based
estimates for each of the temporal midpoints of the 31-day data segments.

drifters. The average square root of the absolute dispersion curve, calculated by averaging
the estimates from the four data subsets for each day after deployment (black curve in
Fig. 12), contained an inertial component superimposed on a linear trend for the first week
followed by a more gradual trend. A linear trend was expected for flow obeying Taylor’s
assumption. The slopes of the average square root of the absolute dispersion curve start
to decrease after the first week after launch as theory suggests. After that time, between
August 27 and August 29, Hurricane Isaac went right over many of the drifters. Hurricane
Isaac’s strong winds significantly changed the surface velocity statistics, increased dispersion
over a large area, caused drifters to be beached in the Mississippi Delta region, and were
responsible for a premature termination of some drifters. Curcic et al. (2016) detail the
significant changes due to Isaac in the upper ocean flow and wave fields, including increasing
relative diffusivity by a factor of six.
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K is directly calculated using (4a) and (4b) for the primary drifter clusters for the first
month of the deployment by fitting a tense cubic spline to the time series of the position
variance divided by 2, and calculating the temporal derivative from the spline fit (curves in
Fig. 13). There is a lot of variability in the estimates of K with its magnitude varying by
three orders of magnitude. The largest diffusivity values are O(105) m2/s with the maximum
occurring at the time of Hurricane Isaac, and the largest values associated with drifters in
the jet and the Loop Current Eddy. Negative values of K are presumably due to inertial
motion and eddies that cause drifters to get closer to their initial positions. The temporal
trend of increasing K is due to more drifters entering the energetic eddy flows in the deeper
waters after leaving the shelf. A smoothing spline (Inoue, 1986) fit to the average diffusivity
time series yields lower estimates of the maximum K by an order of magnitude (Fig. 13,
bottom) with an asymptote of O(104) m2/s.

Diffusivity estimates based on (6) for the different data segments also show considerable
variations, and that most of the Taylor-based estimates are between 103 and 104 m2/s for
the first month of deployment (black dots in Fig. 13). Estimates of this quantity from
the GLAD drifters vary by two orders of magnitude from the coastal regions with weaker
flow to the stronger flows, in deeper waters, with values ranging from O(1 × 103 m2/s) to
O(2× 105 m2/s) (Fig. 14). The estimates of K using Taylor’s results in the same figure are
averages of all Taylor-based diffusivity estimates in Fig. 13, top, for each of the temporal
midpoints of the data segments for each cluster during the first month of the experiment.
The Taylor estimates are lower presumably due to the compounded averaging, which is
a smoothing operation. The direct estimates of total horizontal diffusivity are based on
calculating a derivative, an operation that is not smoothing. Chiswell (2013) also found
that Taylor-based diffusivity estimates are lower than those directly estimated from taking
temporal derivatives. The variability and sensitivity of the K estimates even for such a large
data set indicate that the simple dispersion theories postulating a uniform K value are not
applicable for surface flow in this dynamically diverse region.

GLAD horizontal diffusivity estimates span the same two orders of magnitude as the
previous diffusivity estimates for near-surface drifters (Table 1). The lowest horizontal dif-
fusivity values, O(103 m2/s), in all of these studies are found near the coast and shelf. The
largest diffusivity values, in the previous studies, are found in regions with strong flows and
large values of eddy kinetic energy. Sallée et al. (2008) estimated their largest diffusivity
value where the Antarctic Circumpolar Current interacts with topography and Bauer’s et
al. (2002) largest estimates are in the core of the South Equatorial Current. The largest
diffusivity value estimated for GLAD drifters is O(2× 105 m2/s) compared to O(105 m2/s)
diffusivity values estimated by Bauer et al. (2002) and Chiswell et al. (2013).

The GLAD diffusivity estimates agree with previous estimates of diffusivity near and
along the shelf, and in most of the deeper GoM. Our analysis of the GLAD drifters also
produced a similar trend of smaller integral time scales and diffusivity values near the coast
increasing to larger values in the deeper GoM. The most significant difference between the
GLAD and previous diffusivity estimates is that our maximum estimates are larger than
previous estimates. The larger diffusivity values are found in the region of fastest flow where
there is significant velocity shear and flow bifurcations, and during Hurricane Isaac. Davis
(1987), Bauer et al. (1998), Oh et al. (2000), and Zhurbas and Oh (2004) discuss methods
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Table 1. Previous Diffusivity Estimates for Near-Surface Drifters

Diffusivity -(m2/s) Region Reference
6.4× 102 Near-coast Louisiana-Texas Shelf Ohlmann and Niiler (2005)
2.1× 103 Louisiana-Texas Mid-Shelf Ohlmann and Niiler (2005)
2.2× 103 Louisiana-Texas 200 m isobath Ohlmann and Niiler (2005)

1.5− 3.0× 103 Ligurian Sea and Adriatic Sea De Dominicis et al. (2002)
3.1− 6.4× 103 West Florida Shelf Ohlmann and Niiler (2005)

O(103) Antarctic Shelf Sallée et al. (2008)
O(104) Antarctic Circumpolar Current Sallée et al. (2008)

O(103)−O(104) Global Near-surface Zhurbas and Oh (2004)
O(103)−O(105) Tropical Pacific Bauer et al. (2002)
O(103)−O(105) Tropical Pacific and Indian Ocean Chiswell et al. (2013)

x 103 m2/s

Figure 14: The horizontal diffusivity, in 103 m2/s, based on the integral time scales,
velocity variance, and Taylor’s analyses.
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to reduce the contribution of horizontal velocity shear to dispersion. On the other hand,
the large diffusivity estimates are large where they should be large, at strong flows with
bifurcation points that are fully resolved by the GLAD drifters, and it is well known that
climatological averages of geophysical variables are biased low (Mariano and Chin, 1996). It
should be noted that this large diffusivity would be appropriate for mean velocity fields that
do not resolve the flow bifurcations, but would be an over-estimate (positive bias) for an
accurate and highly resolved set of mean velocity fields that contain the flow bifurcations.

A cluster of drifters will diffuse up a gradient of eddy diffusivity with an induced velocity
Vi (Freeland et al., 1975),

Vi = (ui, vi) = 〈∂Ku

∂x
,
∂Kv

∂y
〉.

The up-gradient flux is on the order of 2 cm/s for vi for the large meridional gradient in
Kv (Fig. 14).

5 Conclusions

In summary, the large volume and high resolution of data generated by the GLAD drifters
allowed reliable estimation and mapping of the average velocity and its variance, correlation
parameters, and integral time scales in the northern GoM during the summer of 2012. Spa-
tial maps of our estimates clearly demonstrate a strong dependency of the primary surface
velocity statistics on topography, and on the location of flow bifurcations. Likewise, the
statistical properties of the surface velocity are clearly a strong function of the dynamical
feature sampled and of the wind forcing. The dependency of Lagrangian statistics on initial
flow conditions has been well-known for many decades, e.g from the lab studies of Welander
(1955), the calculations by Flierl (1981) for simple but realistic ocean flows, for textbook
flows with an energetic high-frequency component (Aref, 1984), and for the quasi-Lagrangian
ocean measurements reviewed in the LAPCOD book (Griffa et al., 2007). The initial flow
conditions are a function of the dynamical features sampled, which vary in the northern
GoM due to topography, wind forcing, and proximity to the Loop Current. Also, strong
wind forcing quickly changes the surface velocity statistics. The observed GLAD statistics
are nonstationary.

As the nature of the dynamics changes from coastal to oceanic, so do the statistical
properties of the surface velocity in the northern GoM. There are large changes in the
statistical properties for all of the derived statistical quantities with smaller values near
the coast and larger values in the deeper waters. The strong inertial, tidal, diurnal wind-
forced motion, and submesoscale eddy features in this region are significant sources of high
frequency variability. The surface velocity statistics are influenced by strong forcing as
evident in the passage of Hurricane Isaac through the area. Thus, all of the necessary
conditions for heterogeneous and nonstationary statistics exist in the northern GoM. The
histograms for most of the statistical parameters are multi-modal and also change depending
on the dynamical features sampled. The multi-modal distribution of the e-folding scales and
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dominant period, as well as the spatio-temporal distribution of the velocity variance estimates
lead to a family of surface velocity covariance functions. The assumption of a single uniform
distribution prior in Bayesian-based analysis or the use of a single covariance function for
assimilation methods is not optimal for the surface velocity field of this region. A method
analogous to the parameter matrix algorithm of Mariano and Brown (1992) will be required
with parameter values increasing offshore.

Taylor’s results depend on stationary velocity statistics, but such statistics do not exist in
the surface velocity field of the northern GoM. Taylor’s results relating diffusivities to integral
time scales were derived assuming stationary velocity statistics. Nevertheless, Taylor-based
estimates can provide order of magnitude estimates of diffusivity. It must be noted that
these estimates and any climatological estimates are of little use for operational, real-time
prediction of oil movement, given that K is a strong function of dynamical features and of the
wind forcing. The dependency of K and the probability density distribution of the statistical
parameters on dynamical features will be a challenging task for numerical modelers and data
assimilation algorithms to incorporate into Eulerian models.

The maximum diffusivity values for the GLAD drifters that are calculated either directly
or using Taylor’s analyses are larger by an order of magnitude than most climatological
diffusivity estimates for surface flows, and a factor of two greater than previous maximum
estimates. These large values are associated with a jet, that results from the interaction of
a Loop Current eddy and cyclonic eddies, adequately sampled by the GLAD drifters, and
are a “snapshot” compared to climatological averages. The largest diffusivity was estimated
during the passage of Hurricane Isaac in the vicinity of flow bifurcations. Outside of the
large diffusivity region near 88− 87◦W, 26◦N, the GLAD diffusivity estimates also exhibit a
visual correlation with topography. There is a large topographic beta in this region and its
influence on the fluid dynamics, and hence the integral time scales and diffusivities, should
be large.

GLAD is a major step in understanding the spatial distribution of the surface velocity
statistics in the northern GoM and should be repeated at other times of the year to inves-
tigate the stationarity of the velocity statistics with respect to the seasons and to different
atmospheric forcing. It should be stressed for management purposes that the region of the
2010 oil spill in the GoM has relatively weak flow and low diffusivity values. Also, the
super-positioning of strong dynamical features can lead to long distance transport pathways
across climatological mean velocity fields. GLAD drifters sampled such a pathway and veri-
fied their efficient transport properties first deduced from satellite images of ocean color and
numerical model simulations (Toner et al., 2003). The rapid advection of drifters via this
pathway quickly brought drifters into a different dynamical regime with different surface
velocity statistics to sample.

The large spatio-temporal variability in the observed velocity statistics, and in diffusivity
estimates, indicates that classical theory, while elegant in the mathematical world, does not
adequately describe the real world. The ergodic theorem that allows us to replace ensemble
averages of different flow realizations by a large number of data points is the starting point for
the analysis of geophysical data. The GLAD experiment shows that even with 5 million data
points only a few energetic eddies were primarily sampled, and that the velocity statistics
are a strong function of the dynamical feature sampled. Oceanographers necessarily can
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only sample one realization of the flow for any given space-time volume of strongly-varying
ocean dynamics and consequently need to be wary of making the ergodic assumption. The
dispersion statistics computed from the GLAD drifter data set suggest that a new paradigm
is needed for ocean dispersion that does not depend on stationary flow in homogeneous
domains, but accounts for different dynamical features and their interactions.
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