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Abstract

A numerical study aimed at investigating the roles of both the stratification and
topographic slope in generation of turbulent coherent structures in the lee of capes
is presented. We consider a steady barotropic current impinging on an obstacle in a
rotating and linearly-stratified environment. The obstacle is a triangular prism and
represents an idealized headland extending from the coast. Numerical experiments
are conducted at constant Rossby number Ro = 0.06, varying the Burger number,
Bu, and the obstacle slope, α.

Flow regime diagrams in the Bu − α space are determined. For Bu < 0.1, ver-
tical movement over the obstacle is enhanced and a fully-attached regime with
pronounced internal waves is established. For 0.1 ≤ Bu < 1, fluid parcels flow more
around the obstacle than over it. Flow separation occurs and small tip eddies start
to shed. For Bu ≥ 1, tip eddies merge to form larger eddies in the lee of the cape.
We find that previous laboratory results cannot be used for gentler slopes, since
bottom flow regimes are strongly dependent on α when Bu ≥ 1.

The form drag coefficient exerted by the cape is at least two orders of magnitude
larger than the one due to skin friction. It increases with increasing Burger num-
bers and decreasing slopes. When no separation occurs (low Bu), the increase with
decreasing slopes is the result of the mixing associated with hydraulic phenomena.
For intermediate and high Bu, form drag coefficients reach larger values as a re-
sult of the boundary layer mixing associated with flow separation. We put forth an
empirical parametrization of form drag in the Bu− α space.
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1 Introduction

Coastal circulation is influenced by the complex shape of the coastline. In
particular, leeward eddies have been observed behind topographic features like
prominent headlands and capes (e.g. Pattiaratchi et al., 1986; Farmer et al.,
2002; McCabe et al., 2006). These eddies impact the physics of coastal systems
and play a role in biological, ecological, and geological processes. Leeward
eddies affect the dispersion of dissolved pollutants (Hayward and Mantyla,
1990; Doglioli et al., 2004b), floating organisms (Chiswell and Roemmich,
1998; Roughan et al., 2005; Rankin et al., 1994; Murdoch, 1989), nutrients
(John and Pond, 1992) and sediments (Pingree, 1978; Bastos et al., 2002,
2003; Jones et al., 2006).

From a dynamical perspective, capes and headlands are important for the
circulation because they are associated with enhanced mixing, drag and dis-
sipation (Farmer et al., 2002; Pawlak et al., 2003). All the processes usu-
ally observed around capes, like current separation, formation of eddies and
generation of lee waves, result in a drag force imparted on the larger scale
coastal flows. Obstacles can decelerate flows in two distinct ways: via tangen-
tial stresses over the surface of contact (skin drag), or via pressure differences
across the obstacle (form drag). Recent studies associate the efficiency of the
extraction of energy from coastal flows more with the obstacle shape than with
the viscous dissipation due to bottom boundary layer processes. Moum and
Nash (2000) and Nash and Moum (2001) find that, on a 5 km long obstacle,
form drag exceeds skin friction by a factor of 2-3. According to the observa-
tions across Knight Inlet, Klymak and Gregg (2001, 2004) show that the form
drag due to internal waves accounts for approximately 67% of the total en-
ergy dissipation and appears to be the major energy sink. It is followed by the
drag due to horizontal eddies, bottom friction and internal dissipation. In the
numerical simulations of Puget Sound and of the Strait of Juan de Fuca, both
Lavelle et al. (1988) and Foreman et al. (1995) are obliged to use bottom drag
coefficients about 5-10 times larger than the commonly used value (3× 10−3)
in order to match observations. It is thought that the form drag associated
with the unresolved topographic features present in the area is the cause of
the missing dissipation (Edwards et al., 2004).

Since ocean coastlines are usually tortuous, and coastal areas are full of sub-
merged topographic features like sills, straits and banks, the understanding
of the processes influencing the form drag remains a critical point in mod-
eling the ocean circulation realistically. This problem is inherently linked to
the understanding of the conditions under which different coastal flow regimes
appear. The theoretical study by MacCready and Pawlak (2001) shows that
the form drag associated with a headland is affected by lee waves and eddy
formation. However since they consider a small cape (∼ 1 km) in a strongly-
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stratified tidal system, their analysis neglects the Earth’s rotation and their
results cannot be applied to the cases with small Rossby numbers, namely for
slower flows impinging on larger obstacles. Thus, it is not clear under which
conditions different flow regimes appear when rotation and stratification are
both important for the dynamics.

Understanding the factors affecting eddy formation is challenging because the
dynamics of the processes involved are complex. Eddy generation is connected
to the phenomenon of current separation occurring in presence of obstacles
(Batchelor, 1967) and it can be explained in terms of adverse pressure gra-
dients and boundary layer detachment (Schlichting and Gersten, 2003). The
studies of homogeneous non-rotating flows usually consider a constant flow
impinging on a columnar (non-sloping) cylinder. They show the dependence
of the separation process on different non-dimensional parameters like the
Reynolds number, defined as Re = UD/ν, where ν is the kinematic viscosity,
while U and D are the characteristic velocity and the horizontal dimension,
respectively (Batchelor, 1967). For 40 < Re < 1000 a periodic eddy shed-
ding regime is established and, if fs is the shedding frequency, the Strouhal
number St = fsD/U can be defined. In a homogeneous non-rotating flow,
St is usually constant and equal to 0.21 (Kundu and Cohen, 2002). Even in
complex stratified and rotating conditions reproducing flows past islands, the
Strouhal number remains close to this value, being St = 0.23 (Dong et al.,
2007). For geophysical applications, Tomczak (1988) distinguishes between
shallow and deep water dynamics, depending on whether the dominant role
of friction in the system is played by lateral or vertical stresses. Following
the same idea and using the turbulent vertical viscosity ν∗

V
, Wolanski et al.

(1984) introduce the so-called island wake parameter P = (UH2)/(ν∗
V
D). In

analogy to the Reynolds number, this parameter quantifies the importance of
lateral advection relative to the vertical friction. Many studies show how P
effectively controls the flow around atolls and islands (Wolanski et al., 1996;
Lloyd et al., 2001; Stansby and Lloyd, 2001; Neill and Elliott, 2004). Since
in shallow waters bottom friction can be dominant, Pingree and Maddock
(1980) use the bottom drag coefficient C

D
instead of ν∗

V
. In this case, the

importance of lateral advection relative to bottom friction is quantified by so-
called equivalent Reynolds number, Ref = H/(C

D
D). Ref effectively controls

the flow (Pattiaratchi et al., 1986; Signell and Geyer, 1991; Doglioli et al.,
2004a). For very small Ref , when friction dominates, the flow tends to follow
the obstacle without separating. At increasing Ref , laminar separation occurs
and attached stationary eddies form in the lee of the obstacle. For higher Ref ,
the eddies detach and propagate downstream, leading to an eddy-shedding
unstable regime.

If N is the buoyancy frequency and H the characteristic vertical scale, the im-
portance of stratification is generally measured by the internal Froude number,
Fr = U/(NH). For 0.2 < Fr < 1 three-dimensional motions are present in
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the wake of the obstacle and they are responsible for the generation of small-
scale tip eddies. When stratification is sufficiently high, Fr < 0.2, vertical
motions are suppressed and the flow field is almost two-dimensional (Davies
et al., 1990a). Internal waves, as well as the vertical extent of the wake, are
strongly reduced and vertically thin “pancake” vortices can emerge (Lin and
Pao, 1979). When Fr ≥ 1 (supercritical flows), upstream propagation of in-
ternal gravity waves is not possible since the velocity of the fluid is equal or
larger than their speed (Kundu and Cohen, 2002). Supercritical conditions and
hydraulic jumps can then be encountered in presence of contractions and sills
(Armi, 1986). For a two-layer system, the strength of the net barotropic flow
changes the position of the critical point depending upon which the geometri-
cal changes happen in width (Armi and Farmer, 1986) or in depth (Farmer and
Armi, 1986). Pawlak and Armi (1996) and Pawlak and Armi (1997) extend
these results to include the effects of friction.

If f is the Coriolis parameter, the Rossby number Ro = U/(fD) is also shown
to control the eddy regime (Walker and Stewartson, 1972; Merkine and Solan,
1979; Boyer and Metz, 1983; Page, 1985), while the β-effect inhibits the pro-
cess of separation (Merkine, 1980; Boyer and Davies, 1982). In a stratified,
rotating fluid, the importance of stratification in the separation process can
be quantified in terms of the Burger number Bu = (Ro/Fr)2 = (Rd/D)2,
where Rd = NH/f is the baroclinic deformation radius (Davies et al., 1990b).
For a vertically-sheared incoming flow, the overall baroclinic conversion pro-
cess is sensitive to Bu. When Bu ≥ 1 (i.e. D ≤ Rd), the baroclinic conversion
is negative and the eddy generation process is mainly due to barotropic con-
version. When Bu < 1 (i.e. D > Rd) the baroclinic term changes sign and is
positive. For smaller Bu, baroclinic instabilities are gradually favored and the
overall baroclinic conversion process becomes larger and predominant (Dong
et al., 2007).

The theoretical results on flow separation in presence of obstacles are success-
fully used in many cases to explain the dynamics around islands (Heywood
et al., 1996; Tansley and Marshall, 2001; Coutis and Middleton, 2002). One
can be tempted to extend these results in a straightforward fashion also to the
case of capes. However, the dynamics of islands and capes can be significantly
different for at least two main reasons: the presence of a lateral coast and the
importance of sloping boundaries. Capes are not isolated features in the ocean
as atolls or volcanic islands, but they are connected with the mainland. The
presence of a coastline upstream and downstream the headland adds more lat-
eral friction to the system and reduces the degrees of freedom of fluid motion.
As a result, the critical Reynolds number needed to reach the eddy shedding
regime is higher than for cylinders (Verron et al., 1991) and flow separation
is somewhat inhibited. The Strouhal number decreases as a consequence and
in different conditions drops to the typical value of St = 0.09 (Boyer et al.,
1987; Davies et al., 1990a). Moreover, capes are usually embedded in the shelf
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and in its slope, allowing for different processes to occur. Firstly, the pres-
ence of a sloping obstacle introduces potential vorticity constraints, reducing
barotropic instabilities and the tendency for eddy shedding (Klinger, 1993).
Secondly, flow separation and eddy formation are influenced by the shelf to-
pographic Rossby waves in a similar manner as the differential background
rotation (Freeland, 1990). Thirdly, in case of stratified waters, the presence of
a sloping obstacle allows the generation of lee waves (MacCready and Pawlak,
2001).

The study of cape dynamics relies on laboratory works (Boyer and Tao, 1987;
Boyer et al., 1987; Davies et al., 1990a), field experiments (Geyer, 1993; Farmer
et al., 2002; Pawlak et al., 2003; Edwards et al., 2004) and numerical results
(Verron et al., 1991; Signell and Geyer, 1991; Davies et al., 1995; MacCready
and Pawlak, 2001; Doglioli et al., 2004a).

The laboratory experiments of Boyer and Tao (1987) (hereinafter referred as
BT87) address the case of rotating stratified flows impinging on a triangular
prism cape with sloping sides. In the case of a right-side obstacle and for Bu <
0.2, the horizontal flow is fully-attached at all vertical levels. For somewhat
larger Burger numbers, 0.2 < Bu < 1, an attached anticyclonic eddy slowly
forms in the lee of the obstacle. At still larger Burger numbers, Bu > 1, a
well-defined eddy shedding regime is established. The aspect ratio δ = H/D
of laboratory experiments is generally very high compared to those in the real
ocean. As a result, the obstacle used in BT87 corresponds to a very steep
cape with slope α = 1. As pointed out by the same authors, this geometry
is far from being realistic. Even in coastal environments where capes can be
very steep, the slope never reaches a value of α = 1. Pawlak et al. (2003),
for example, report a cape with slope α = 0.2; the promontory considered
by Doglioli et al. (2004a), instead, has α = 0.1 while it is embedded in a
much gentler sloping shelf. The coastal headland studied by Geyer (1993) has
a much lower slope, α = 0.015 and larger scale features like the Gargano
Promontory reach much lower values, like α = 0.004 (Cushman-Roisin et al.,
2007; Veneziani et al., 2007). The variations in the slope directly reflect into
the Ref values underlining the increasing role of bottom friction for smaller
aspect ratios. It remains not clear what is the role of topographic slope on
the flow regimes behind a cape and if the observations made by BT87 are still
valid for gentler slopes and more realistic scenarios.

Different observations underline that the interplay between sloping capes,
rotation and stratification leads to complicated three-dimensional processes
(Geyer, 1993; Farmer et al., 2002; Pawlak et al., 2003). Nevertheless, most of
the numerical studies focus on the case of shallow water capes (Verron et al.,
1991; Signell and Geyer, 1991; Davies et al., 1995), where the flow can be con-
sidered homogeneous and obeying vertically-integrated dynamics. Exceptions
are the numerical works of Doglioli et al. (2004a) and MacCready and Pawlak
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(2001) which are three-dimensional. However, the former considers a winter
non-stratified quasi-homogeneous flow, while the latter neglects rotation. As
a result, the effect of stratification in a rotating environment for a relatively
deep cape has not been extensively explored thus far.

In this study, numerical simulations are carried out to pursue three main
objectives. The first objective is to assess the sensitivity of the generation
of turbulent coherent flow structures behind a cape to the combined effect of
stratification and rotation. We keep the Rossby number constant at Ro = 0.06,
and consider a geostrophically-balanced, steady barotropic current impinging
on a headland under different stratified conditions. The second objective is
to assess the effects of topographic slopes (or equivalently Ref ) on the flow
regimes. In order to cover the large slope range found in the literature and
the ocean, we consider in our analysis five slopes: α = 1, α = 0.1, α = 0.02,
α = 0.01 and α = 0.005 which corresponds to as many as Ref values, Ref =
208, Ref = 21, Ref = 4, Ref = 2 and Ref = 1. To our knowledge, this
study represents the first three-dimensional numerical and systematical effort
assessing the changes in the flow regimes at varying Burger and equivalent
Reynolds numbers. The third objective is to quantify the implications of the
different regimes in the force drag imparted from the cape to the coastal flow.
In order to do that, we calculate the form drag coefficients for all the cases so
far considered.

In agreement with the laboratory experiments of Boyer and Tao (1987), we
find that the separation process is enhanced for increasing Bu. However, when
gentler slopes (smaller Ref ) similar to oceanic ones are considered, the impor-
tance of bottom friction increases and the same process is gradually more
inhibited. Flow regimes diagrams in the Bu− α space show that bottom fric-
tion is important especially near the bottom when Bu ≥ 1. We also find that
the form drag coefficient is at least 100 fold greater than the skin drag one and
it reaches larger values for increasing Burger numbers and decreasing slopes
(decreasing Ref ). We empirically fit the values obtained from the runs to ex-
press with a function the dependency of the form drag coefficient on Bu and
α.

The paper is organized as follows. In section 2 the numerical model is presented
together with a description of the numerical setups for all the simulations.
The results are presented in section 3. In particular, sections 3.1 and 3.2 show
the appearance of different flow regimes when the Burger number and the
topographic slope are varied. Section 3.3 discusses the implication of these
regimes on the different drags imparted on the coastal flow. A summary and
concluding remarks are given in section 4.
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CONSTANT PARAMETERS

Dimensional Non-dimensional

H [m] Sbot Temp. [◦C] CD Ro Re∗

81 35 12.5 3× 10−3 0.06 Implicit

Table 1
Constant parameters for all the simulations.

2 Method

2.1 Numerical model

The numerical model used in this study is the Regional Ocean Modeling Sys-
tem (ROMS). ROMS solves the primitive equations and it is a hydrostatic
terrain-following (sigma) coordinate model (Shchepetkin and McWilliams,
2005). Sigma coordinates are particularly useful in coastal applications be-
cause they resolve bottom boundary layer processes.

Since geophysical flows are characterized by large Reynolds numbers, in this
study we decide to use ROMS ability to run with zero explicit numerical viscos-
ity ν∗ and to just use the implicit viscosity built into the third-order, upstream-
biased advection operator (Shchepetkin and McWilliams, 1998). The effective
turbulent Reynolds number Re∗ = UD/ν∗ is then established by the resolution
of the grid: it represents the largest affordableRe∗ with a certain discretization.
The simulations are run with the ROMS default generic length scale algorithm
(Umlauf and Burchard, 2003) which defines a k − ε turbulence closure with
Canuto-A stability functions (Canuto et al., 2001). The skin bottom friction
stress is calculated directly by the model according to the quadratic relation

~τb = −ρ0CD
~vb
√
u2
b + v2

b , where ~vb ≡ (ub, vb) is the bottom velocity and ρ0 the

water density. The skin drag coefficient is always set to C
D

= 3 × 10−3 and
therefore there is an one-to-one relation between the slope and Ref . No-slip
boundary conditions are simulated by the model via a specific land-masking
rule (see discussion in Dong et al., 2007) even when ν∗ = 0 (Shchepetkin and
O’Brien, 1996).
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Fig. 1. Numerical setup expressed in terms of D. D is defined as the across-shore
horizontal dimension of the obstacle at the bottom. a) Plan view of the horizontal
grid. For clarity, every third grid-point is shown in the picture. The northern and
southern boundaries are closed (blue thick line) while the eastern and western are
open. The red line indicates where the slope terminates. The areas PTLS (yellow),
IJKL (cyan) and PQRS (green) are functional to later calculations of the vertical
velocity, the kinetic energy and the form drag, respectively. b) Three-dimensional
shape of the cape.

2.2 Numerical setup

Coastal capes have characteristic horizontal dimensions which can scale from
D ∼ 1 km to D ∼ 100 km. In the case of shallow waters (H ∼ 10 m), the
dynamics around headlands are known to be dominated by bottom frictional
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Bu

0.0 0.05 0.10 0.30 0.50 0.70 1.00 3.00 6.48

Ref (α)

208 (1) x x x x x x x x x

21 (0.1) x x x

4 (0.02) x x x

2 (0.01) x x x x x x

1 (0.005) x x x

Table 2
The matrix of the numerical simulations for this study.

effects (Signell and Geyer, 1991; Davies et al., 1995). For relatively deep waters
(H ∼ 100 m) the dynamics are less clear and more interesting. Complicated
three-dimensional phenomena are shown to take place and to be strongly
dependent on the system parameters (Geyer, 1993; Farmer et al., 2002; Pawlak
et al., 2003; Doglioli et al., 2004a). In these cases, if typical values of C

D
∼

10−3, f ∼ 10−4 sec−1, U ∼ 0.1 m sec−1 and N ∼ 3×10−3 sec−1 are considered,
it is possible to calculate realistic ranges for the parameters Ro, Bu and Ref ,
namely: 10−2 < Ro < 1; 10−3 < Bu < 10; and 1 < Ref < 100.

In all the simulations the obstacle is a triangular prism with sloping bound-
aries lying on a flat bottom (see Fig. 1b) and the domain of integration is a
zonal channel discretized with a rectangular unevenly spaced grid of 285 ×
100 points (Fig. 1a). The mesh size increases in both the along and across
directions moving away from the obstacle. The most resolved interior area
around the cape has a horizontal resolution of ∆ = D/65 in all the simula-
tions, while the vertical resolution relies on 20 sigma layers. Open boundaries
are located at the east and at the west of the domain while a no-slip condition
on a rigid wall is implemented at the north and at the south (see Fig. 1a). The
simulations are forced by inflow conditions at the open boundaries. Here the
Flather condition is used for the averaged velocities, while radiation conditions
are used for the sea surface height, baroclinic velocities and the tracers. At
the boundaries the tracers are relaxed toward the initial values in an area of
six grid points to facilitate the radiation outside the numerical domain. The
stratification is induced by a linear increase in the initial salt distribution with
depth, while the temperature is held constant.

In all simulations, the characteristic vertical dimension is set to H = 81 m,
the constant temperature to 12.5◦C and the bottom salinity to Sbot = 35 (the
surface value Ssrf is varied at varying stratification). The Rossby number Ro
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is also held fixed at the realistic value of Ro = 0.06, that is very close to
the one used in the photographed experiments of BT87 thus allowing for a
convenient visual comparison between our results and the ones observed in
the laboratory. The parameters held always constant are listed in Table 1.

The main non-dimensional parameters varied in this study are the Burger
number Bu and the equivalent Reynolds number Ref . This latter is changed
by varying the slope of the obstacle α. We span the ranges 0 ≤ Bu ≤ 6.48
and 1 ≤ Ref ≤ 208 ( or 0.005 ≤ α ≤ 1, see Table 2). The horizontal dimen-
sion D, the rate of rotation f , the surface salinity value Ssrf and the inflow
unperturbed velocity U are varied according to the values of Bu and α, with
the additional constraint of constant Ro. The whole set of dimensional and
non-dimensional values for the performed experiments are listed in Table 3.
The first block of nine experiments cover the range of the BT87 laboratory ex-
periments, characterized by α = 1 and increasing Bu. The other experiments
investigate the dynamics at gentler (and more realistic) slopes.

The external value for the normal velocity to the open boundaries is prescribed
according to the Rossby number Ub = Ro fD, while the value for the sea
elevation is needed to sustain geostrophically with its gradient such a veloci-
ty. The value for the tangential velocity is set to Vb = 0 m/s. To simulate a
sudden start comparable with the BT87 experiment, all the simulations begin
with U = Ub prescribed in the whole domain.

The simulations run until τ = 25.92, where τ is the dimensionless advective
time defined as τ = tU/D. Time-steps are varied always respecting the CFL
condition. For example, the nine simulations for the first set of experiments are
run with baroclinic and barotropic timesteps of ∆ti = 0.5 sec and ∆te = 0.025
sec, respectively. In order to achieve τ = 25.92, the model cycles in this case
for 86400 time iterations and each simulation requires a wall-clock time of four
days using a single processor.

For the same typical values, the β-effect is expected not to play a significant
role, since 10−4 < βD/f < 10−2. In contrast, topographic Rossby effects can
be relevant, given the steep slope of some cases. However, this study is limited
to the case where the obstacle lies on the right hand side of the in-coming
current and we expect topographic waves not to alter the flow significantly
because they propagate in the same direction as the main current (Freeland,
1990).
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VARIABLE PARAMETERS

Dimensional Non-dimensional

Exp. D [km] U [m sec−1] f [sec−1] Ssrf Ref (α) Bu

1 0.13 0.078 10−2 35.00 208 (1) 0.00

2 0.13 0.078 10−2 34.86 208 (1) 0.05

3 0.13 0.078 10−2 34.74 208 (1) 0.10

4 0.13 0.078 10−2 34.18 208 (1) 0.30

5 0.13 0.078 10−2 33.64 208 (1) 0.50

6 0.13 0.078 10−2 33.08 208 (1) 0.70

7 0.13 0.078 10−2 32.27 208 (1) 1.00

8 0.13 0.078 10−2 26.76 208 (1) 3.00

9 0.13 0.078 10−2 17.61 208 (1) 6.48

10 1.30 0.078 10−3 34.86 21 (0.1) 0.05

11 1.30 0.078 10−3 32.27 21 (0.1) 1.00

12 1.30 0.078 10−3 17.61 21 (0.1) 6.48

13 6.50 0.039 10−4 34.96 4 (0.02) 0.05

14 6.50 0.039 10−4 34.32 4 (0.02) 1.00

15 6.50 0.039 10−4 30.52 4 (0.02) 6.48

16 13.0 0.078 10−4 34.86 2 (0.01) 0.05

17 13.0 0.078 10−4 34.74 2 (0.01) 0.10

18 13.0 0.078 10−4 34.18 2 (0.01) 0.30

19 13.0 0.078 10−4 33.64 2 (0.01) 0.50

20 13.0 0.078 10−4 32.27 2 (0.01) 1.00

21 13.0 0.078 10−4 17.61 2 (0.01) 6.48

22 26.0 0.156 10−4 34.45 1 (0.005) 0.05

23 26.0 0.156 10−4 29.52 1 (0.005) 0.50

24 26.0 0.156 10−4 24.00 1 (0.005) 1.00

Table 3
Varying parameters for all the simulations.
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a)

b)

Fig. 2. Three-dimensional views of relative vorticity iso-surfaces in the vicinity of
the cape. Negative values are shown in blue, while positive values are in yellow.
a) Exp. 16: a typical example of fully-attached regime, when no separation occurs
and lee waves are evident in the lee of the obstacle. b) Exp. 21: an example of
eddy shedding regime. The flow is almost two-dimensional and flow separation is
observed behind the cape.
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3 Results

Different flow regimes can be observed in the numerical experiments listed
in Table 3. Fig. 2 provides a visual idea of flow regimes at constant slope
(α = 0.01) but at different Burger numbers. It also underlines the complexity
and the three-dimensional structure of the different turbulent features appear-
ing behind the cape. Fig. 2a shows vorticity surfaces for the fully-attached
regime when Bu = 0.05. In this case the horizontal flow follows the obstacle
at different vertical levels and no separation behind the obstacle is observed.
Vertical movements are due to the presence of lee waves evident as elongated
oscillating structures behind the obstacle. Fig. 2b shows an eddy shedding
regime when Bu = 6.48. Vertical movements are restricted and the flow is
more two-dimensional. As a result, a separation area is observed behind the
obstacle and coherent eddies form behind the cape.

To put order in describing the totality of the regimes, it is convenient to
initially restrict our attention to simulations having the same parameters of
the BT87 laboratory experiments. We then consider gentler slope cases as the
ones that can be found in the ocean.

3.1 Flow regimes for α = 1 (Ref = 208)

We first analyze the case with α = 1 to compare the flow regimes obtained
running ROMS with the BT87 laboratory experiment. It is useful to recall
the main findings of the BT87 work. For a right side obstacle, BT87 show the
appearance of three different regimes corresponding to a gradual increase of
stratification: (i) a fully-attached regime for low Burger numbers (Bu < 0.2),
(ii) an eddy-attached regime for intermediate Burger numbers (0.2 < Bu < 1)
and (iii) an eddy shedding regime for high Burger numbers (Bu > 1).

Figures 3 and 4 show vorticity and velocity snapshots obtained when the nu-
merical model is integrated. The fields are shown at three different depths and
for increasing Bu. In the homogeneous case (Bu = 0.00, Fig. 3a, b and c), po-
tential vorticity conservation constrains the generation of small anticyclones in
the stripe over slope topography. However, since the geometry of the obstacle
is symmetric, an upstream decrease in relative vorticity due to the presence of
shallower waters corresponds with an equal downstream increase as the waters
become deeper. As a result, all the vorticity gradients are confined above the
slope and nothing significant can be observed downstream the obstacle at any
depth.

The presence of stratification, even if very weak, changes the dynamics. For
small Burger numbers, Bu = 0.05, no eddies are present. The flow tends to
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α = 1 (Ref = 208)

a) Bu = 0.00, z∗ = 0.75 d) Bu = 0.05, z∗ = 0.75 g) Bu = 0.30, z∗ = 0.75

b) Bu = 0.00, z∗ = 0.50 e) Bu = 0.05, z∗ = 0.50 h) Bu = 0.30, z∗ = 0.50

c) Bu = 0.00, z∗ = 0.25 f) Bu = 0.05, z∗ = 0.25 i) Bu = 0.30, z∗ = 0.25

Fig. 3. Close up of relative vorticity [sec−1] and velocity vectors at three different levels of the water column (z∗ = z/H) after τ = 9.936
for the α = 1 simulations. The black dash-dotted line indicates where the slope terminates.
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α = 1 (Ref = 208)

a) Bu = 0.70, z∗ = 0.75 d) Bu = 1.00, z∗ = 0.75 g) Bu = 6.48, z∗ = 0.75

b) Bu = 0.70, z∗ = 0.50 e) Bu = 1.00, z∗ = 0.50 h) Bu = 6.48, z∗ = 0.50

c) Bu = 0.70, z∗ = 0.25 f) Bu = 1.00, z∗ = 0.25 i) Bu = 6.48, z∗ = 0.25

Fig. 4. As in Fig. 3 but for different Bu.
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follow the obstacle at all levels (fully-attached regime, Fig. 3d, e and f). At
the same time, a clear oscillating signal in the vorticity field can be observed
starting from the tip of the cape and continuing downstream. The signal is
associated with the formation of lee waves as the flow goes over the ridge of
the cape. If we increase further the Burger number, 0.10 ≤ Bu ≤ 0.30, small-
scale eddies form at surface in the lee of the cape and they drift downstream
away from the obstacle as isolated small features (Fig. 3g). The strongest
of these smaller eddies come from the area close to the tip of the cape. We
therefore refer to this turbulent regime as tip-eddy regime. At depth some
of these tip eddies merge to form larger scale structures (Fig. 3h and i). For
higher Burger numbers, 0.50 ≤ Bu ≤ 0.70, the same structures gradually grow
and occupy all the space available in the lee of the cape. Their diameter is
comparable at every depth with the across-shore obstacle dimension at that
level. We refer to these larger eddies as lee eddies. Due to the direction of
the incoming current, the first eddy forming in the lee is an anticyclone. Its
interaction with the sides of the obstacle causes the formation of a lee cyclone.
This latter also grows in time and, with its growth, it allows the detachment
of the first eddy from the wall. At the same time a second lee anticyclone
can start forming. When the second lee anticyclone occupies the whole lee of
the cape, the cyclone is also pushed downstream and it sheds from the cape.
The cyclone interacts with the first anticyclone forming an eddy pair which
advects downstream. Once the pair sheds from the cape, a second one forms
in the lee and the cycle is repeated. For these Bu values, an eddy shedding
regime is therefore established. Initially the lee eddies are weak and they do
not appear as coherent vorticity features even if their strength increases with
depth (Fig. 4a, b and c). A weaker signal of the presence of lee waves can
still be observed at surface, while at the bottom, smaller tip eddies still form
close to the apex of the obstacle and they are advected along the periphery of
the larger lee anticyclone. For Bu = 1.00, the eddy shedding regime is more
evident because the eddies are stronger and more coherent than before at all
depths (Fig. 4d, e and f). Finally, for large stratification, Bu = 6.48, the eddies
are more elongated and stronger (4g, h and i).

In our simulations, two of the regimes observed in the laboratory are evident.
For Bu < 0.1 the fully-attached regime appears behind the obstacle as well
as the eddy shedding for Bu ≥ 1 values. For intermediate Bu, however, the
numerical model makes a rapid transition from the fully-attached regime to
tip eddies which gradually organize and shed more for increasing stratifica-
tions. Irrespective of the value for Bu, the BT87 eddy-attached case is not
reproduced in our runs and seems to describe only a transitional state be-
tween the fully-attached and the eddy shedding regimes. We speculate that
its relative importance in the laboratory experiments should be attributed to
important features which cannot be reproduced in our simulations. For ex-
ample, the BT87 experimental apparatus has a rigid Plexiglas lid on the top
of the tank. This lid can introduce additional friction and the same authors
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α = 1

a) Surface, z∗ = 0.75 b) Bottom, z∗ = 0.25

Fig. 5. The ratio KE/KE0 in time for varying Burger numbers Bu. The obstacle
slope is α = 1 in all the considered simulations.

observe spin down effects on the weaker turbulent structures at the surface
of the tank. Moreover, at the high aspect ratio of the BT87 case, the hydro-
static approximation can be questionable even if, for small Rossby numbers,
the dynamics should remain hydrostatic. Pedlosky (1987) shows that the hy-
drostatic limit occurs when lhydr = min(δ2, δ2Ro) � 1, and in this study
1.5× 10−6 < lhydr < 6× 10−2. Nevertheless we believe that the eddy-attached
case is not reproduced mainly because of the difference between Reynolds
numbers used in laboratory experiments versus numerical simulations. BT87
deal with a real fluid, characterized by its viscosity and Reynolds number Re.
Ocean models, instead, have to rely on numerical viscosity ν∗ to remove and
avoid accumulation of energy at smaller scales and our simulations are run at
the largest Re∗ affordable with our resolution. The enhanced role of viscosity
in the laboratory can explain the importance of the eddy-attached case respect
to the numerical results.

The normalized kinetic energy budget per unit mass, KE/KE0, calculated
over the area PQRS of Fig. 1, is used to follow the temporal evolution of the
flow. Here KE0 = KE(z, t = 0). KE/KE0 is shown at the surface and near
the bottom for varying Bu in Fig. 5. When Bu = 0.05, where no separation
occurs, KE/KE0 remains flat and steady at all levels and times. When Bu =
0.30, an oscillating signal appears. This is consistent with the emergence of the
tip eddies regime observed before. When Bu = 0.50, the lee eddy shedding
regime is evident in the kinetic energy pattern. We can easily count four
distinct maxima. The shedding regimes appear to be in phase at different levels
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and stronger with increasing depths. For increasing Bu, the shedding regimes
are always in phase and gradually more energetic. However, the number of
peaks associated with the shedding decreases.

Summarizing, in the α = 1 case, we can observe a clear general trend for
varying Burger numbers. For low Bu we observe a fully-attached regime while,
increasing the Burger number, eddy generation is gradually more evident until
a clear shedding regime is established for higher Bu. These results match well
the idea that the eddy shedding regime is enhanced if the flow remains more
horizontal than vertical. If stratification is increased, vertical movements are
also reduced and fluid particles are forced to go more around the obstacle than
over it. As a result their trajectories are more and more two-dimensional and
the separation process is more probable to appear than lee wave generation.

3.2 Flow regimes for α < 1 (Ref < 208)

We now describe the results when different obstacle slopes are considered for
varying Burger numbers. With respect to the previous α = 1 case, bottom
friction is expected to be more influential for gentler slope simulations. In an-
alyzing our results, we have to take into account contrasting effects. On one
hand, bottom friction is expected to gradually damp turbulent structures with
gentler slopes, inhibiting lee eddy formation. On the other hand, high stratifi-
cation values are expected to gradually favor separation and eddy generation
in the surface layers for two different reasons. Firstly, strong stratification re-
duces vertical movements forcing particle trajectories to be more and more
two-dimensional. Secondly, a strong stratification shields surface layers from
bottom friction confining its inhibiting effect more to the deeper layers. These
effects can be clearly seen in the α = 0.01 cases (Fig. 6). For Bu = 0.05, the
regime is again fully-attached even if the lee wave signal is less noisy. Its inten-
sity decreases with depth and lee waves almost disappear in the layer closer
to the bottom (Fig. 6a, b and c). When Bu = 1.00, bottom friction influences
most of the water column since stratification is still not so important to shield
the top layers. Near the surface an eddy shedding can still be observed and
the sequence of eddy pairs is very regular and periodic (Fig. 6d). In the middle
of the water column, the evident eddy shedding regime of the steeper case is
generally inhibited. Moreover, after the formation of the first lee anticyclone,
different tip eddies move along its periphery while the lee eddy does not shed
and stays attached to the cape. The occasional presence of small cyclones al-
lows the shedding of small features from the tail of the lee anticyclone. As a
result, the detachment of the eddies from the cape does not happen at the
lee but further downstream (Fig. 6e). At the bottom, the anticyclone rapidly
decays due to bottom friction and the eddy shedding is just due to tip eddies
traveling around its periphery (Fig. 6f). For Bu = 6.48, the increasing stratifi-
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α = 0.01 (Ref = 2)

a) Bu = 0.05, z∗ = 0.75 d) Bu = 1.00, z∗ = 0.75 g) Bu = 6.48, z∗ = 0.75

b) Bu = 0.05, z∗ = 0.50 e) Bu = 1.00, z∗ = 0.50 h) Bu = 6.48, z∗ = 0.50

c) Bu = 0.05, z∗ = 0.25 f) Bu = 1.00, z∗ = 0.25 i) Bu = 6.48, z∗ = 0.25

Fig. 6. As in Fig. 3 but for α = 0.01.
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cation limits frictional effects to near bottom layers. At the surface and in the
middle of the water column, stronger and wider lee eddies form downstream
the cape. They become more elongated to finally detach much later from
the obstacle than for Bu = 1.00 (Fig. 6g and h). At the bottom, the initial
strong lee anticyclone spins down and the tip eddy shedding almost completely
disappears. What is left is a big separation area which remains attached to
the cape for the rest of the simulation (Fig. 6i). We refer to this situation as
an eddy-attached regime.

Summarizing in the α < 1 case, namely for slopes similar to the oceanic ones,
bottom frictional effects are more important than in the laboratory experi-
ments. For gentler slope cases, lee eddies are larger and bottom friction can
act on the wider bottom eddy surface. As a result, bottom friction damps
and spins down turbulent structures and bottom flow regimes can differ from
surface ones.

As before, we can visualize the time trends of the flow regimes with the help
of the ratio KE/KE0. In order to assess just the role of the obstacle slope,
here we just choose to show the simulations with Bu = 1.00 and where just
α is varied. Fig. 7 shows the values for KE/KE0 at the surface and at the
bottom. When α = 1, an eddy shedding regime is present. The maxima due
to the shedding are three and in phase at different depths. They are more
energetic if we move toward the bottom layers. For α = 0.1, the effect of
bottom friction starts to be felt. At all depths the shedding is less energetic
than before. However the frequency of the peaks slightly increases even if the
layers are still in phase with each other. A drastic difference is observed for
gentler slopes. For α = 0.05, the shedding regime is so reduced that the flow
can be considered eddy-attached while, at the surface, three distinct peaks
can still be found. For gentler slopes, α = 0.01 and α = 0.005, these trends
are gradually more evident. At the bottom the first lee eddy does not form
and just tip eddies can be observed. At surface, the lee eddy shedding still
persists and the shedding frequency gradually increases for gentler slopes. We
can count four maxima for α = 0.01 and five when α = 0.005.

Since KE/KE0 accurately reflects the flow characteristics shown in the snap-
shots, we can use the time evolution of this quantity to tell apart the different
flow regimes in the simulations. The concept behind this idea is the follow-
ing. In the case of a fully-attached regime, the KE/KE0 trend is completely
flat and steady in time and this is reflected in a very low standard deviation.
The emergence of tip eddies increases the time variability of the trend and
the standard deviation is expected to slightly increase. When a lee eddy shed-
ding regime appears, the variability increases more while, for a more energetic
lee eddy shedding regime, it is expected to result even larger. The only flow
regimes escaping this simple criterion are the ones strongly influenced by bot-
tom friction. In this cases, the effect of the bottom is so important as to spin
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Bu = 1.00

a) Surface, z∗ = 0.75 b) Bottom, z∗ = 0.25

Fig. 7. The ratio KE/KE0 in time for varying obstacle slopes α. The Burger number
is Bu = 1.00 in all the considered simulations.

down the first lee eddies. If the eddy shedding is initially very energetic, bot-
tom friction gradually weakens the flow and the intensity of the eddies shed.
Otherwise, bottom friction spins down the first lee anticyclone so much to
establish an eddy-attached regime. Both these cases, however, are easily rec-
ognizable since KE/KE0 neither stays flat nor oscillates. Rather, it decays in
time indicating a gradually weakening of the flow. Details of this classification
are reported in the appendix.

Once this classification is performed, a flow regime diagram in the Bu − α
space can be drawn. Figures 8a and 8b show this diagram for the surface
and the bottom layer, respectively. Figure 8a underlines how surface regime
are strongly dependent on Bu and almost independent of α. For low Bu, the
fully-attached regime extends for all the slope values considered in this study.
For high aspect ratios and increasing Bu, tip eddies are followed by a lee eddy
shedding regime. For high Bu this regime becomes stronger and more evident.
When we decrease the slopes, a general inhibition due to bottom friction effects
can be observed. The eddy shedding regime is gradually reached at higher Bu
and, for most of the intermediate Burger numbers, it is replaced by tip eddies.
This shift in the regime happens more gradually for gentler slopes.

The situation changes for the layer close to the bottom since for Bu ≥ 1 the
dynamics are controlled by α. When α = 1, the scenarios are similar to the
surface. This is expected since the bottom friction does not play such a role
for high aspect ratios. For gentler slope cases, lee eddies are larger and their
surface in contact with the sea-floor is proportionally wider. Bottom friction
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Fig. 8. Different regimes varying Bu and the slope α for a) surface and b) bottom.
Note that both axes are logarithmic. The regimes are: fully-attached (+), tip eddies
(E), eddy-attached (9), eddy shedding (◦) and strong eddy shedding (4). The
dashed lines are the approximate divisions between the regimes.
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can decelerate the flow and spin down the first lee eddy forming. As a result,
the strong eddy shedding gradually disappears and eventually leaves space to
the eddy-attached regime. When the importance of bottom friction increases
more, a lee eddy cannot even form and we are left just with small tip eddies.

The time evolution of KE/KE0 of Fig. 5 and 7 already shows important differ-
ences in the lee shedding frequency. In order to quantify these differences, the
Strouhal number is calculated. The period of the shedding is measured by the
time taken for the centers of successive anticyclones to pass the across-shore
section PQ shown in Fig. 1a. Fig. 9 indicates that St decreases for increasing
Burger numbers and for high Bu gets close to the value 0.09 registered in other
works under different conditions (Boyer et al., 1987; Davies et al., 1990a).

In order to show that vertical movements are reduced with increasing Bu
numbers, we calculate the quantity

w∗ =
1

Uδ(τ2 − τ1)APTLS

∫ τ2

τ1

∫
A

PTLS

c
f
wrmsdA ,

where τ1 = 4.32, τ2 = 25.92, A
PTLS

is the projected area shown in Fig. 1, and

wrms(x, y, t) =

√
1

η(x, y, t)− b(x, y)

∫ η

b
w2(x, y, z, t)dz ,
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Fig. 10. The quantity w∗ as a function of Bu and α. Note that the x-axis is loga-
rithmic.

c
f
(x, y, t) =

1 if wrms > 0.2×max(wrms),

0 if wrms ≤ 0.2×max(wrms).

In Fig. 10 w∗ is plotted in function of Bu for all the experiments. The general
trend is a reduction of w∗ for increasing Bu. However, if vertical movements
are clearly suppressed for Bu ≥ 1, a larger scattering can be observed for
lower Burger numbers. This is due to the fact that, for low Bu values, the
coherent structures appearing downstream are largely variable in amplitude
and in space.

3.3 Form drag

The drag associated to pressure differences across an obstacle can be much
larger than the frictional drag and represent the dominant mechanism to decel-
erate the coastal flow impinging on an obstacle (Moum and Nash, 2000; Mac-
Cready and Pawlak, 2001; Edwards et al., 2004; Klymak and Gregg, 2004).
Changes in the momentum can result from skin friction as well as from the
form drag associated to these differences (Baines, 1995; Kundu and Cohen,
2002). In this section of the paper, we want to quantify and compare form and
frictional drags and to assess which physical processes are the cause for their
different values in the various simulations.
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If the sea surface height and the bottom surface are respectively at z =
η(x, y, t) and at z = b(x, y), ρ the density field, ρ0 a constant background
density, ρ′ = ρ−ρ0, and g the gravitational acceleration, the internal pressure
associated with the deformation of the isopycnals upstream and downstream
the cape can be calculated as pint(x, y, t) =

∫ η
b gρ

′dz (McCabe et al., 2006). We
can then assume the pressure to be hydrostatic and split the contribution due
to the sea surface elevation from the one due to pint. Following the literature,
these two different contributions are referred as external and internal form
drags, respectively.

We normalize the drag forces for the different simulations using the charac-
teristic velocity U , the density ρ0 and a suitable area. For the form drags, the
projected frontal area of the obstacle Aprojfront is used, while, for the effective skin
bottom drag, we use the surface of contact Acont on which the bottom stress
can act. This non-dimensionalization allows a comparison of the results in
terms of the magnitude of the commonly used drag coefficient. The following
expressions are therefore used:

C
D

Eff
Fric

(t) =
1

ρ0U2Acont

∫ y2

y1

∫ x2

x1

τxb (x, y, t) dx dy , (1a)

C
D

Ext
Form

(t) =
1

ρ0U2Aprojfront

∫ y2

y1

∫ x2

x1

−ρ0 g η(x, y, t)
∂ b

∂x
dx dy , (1b)

C
D

Int
Form

(t) =
1

ρ0U2Aprojfront

∫ y2

y1

∫ x2

x1

−pint(x, y, t)
∂ b

∂x
dx dy , (1c)

C
D

Tot
Form

(t) = C
D

Int
Form

(t) + C
D

Ext
Form

(t) , (1d)

where τxb is the along-shore component of the skin bottom friction stress. The
double integral is performed on the area IJKL shown in Fig. 1. Specifically
IJ = x2 − x1 and KJ = y2 − y1.

The external form drag is expected to reflect all the sea surface deformations
and to be associated with the eddies forming downstream of the cape over the
area with slope topography. If we consider just the external contribution, lee
cyclones will depress the sea surface enhancing the external pressure difference
across the obstacle and increasing the form drag. For the same mechanism, an-
ticyclones will elevate the surface decreasing the form drag. Given the sequence
of anticyclones and cyclones, it is not exactly clear what the net external form
drag will be in the case of eddy shedding.

The internal form drag, instead, is expected to be connected with the deep-
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a) Bu = 0.05

b) Bu = 1.00

c) Bu = 6.48

Fig. 11. Drag coefficients in time for the α = 0.01 simulations. The magenta dot–
dashed vertical line indicates the specific time for Fig. 13.
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ening of the isopycnals behind the ridge of the obstacle. This effect is usually
due to the formation of lee waves (MacCready and Pawlak, 2001), but it can
be also associated with the internal density structure of the eddies formed and
shed. Also in this case, it is not clear what the net internal form drag will be
when lee waves and different eddies coexist.

Fig. 11 shows the different drag coefficients calculated according to equations
(1) for the α = 0.01 case and different Bu. In all cases the total form drag
has the expected positive sign, i.e. it is directed opposite to the incoming
current and it is much larger than the skin drag. A closer look at C

D
Eff
Fric

reveals that this latter is always O(10−3), while for the α = 0.01 slope, the
total form drag coefficient is always at least two orders of magnitude larger.
When Bu = 0.05 we know that no separation occurs. Thus, the external and
the internal drags are both positive and stationary in time after an initial
transient adjustment (Fig. 11a). Their addition results in a more positive
total form drag. When Bu = 1.00, instead, external and internal drags are
antisymmetric and regularly oscillating in time (Fig. 11b). The net result of
such an asymmetry is a compensation which reduces the time variability of
total form drag keeping it almost constant for all the simulated times (Fig.
11b). When Bu = 6.48, the form drags oscillate less regularly (Fig. 11c).
They are always antisymmetric but larger than before. For this reason, the
total form drag reaches a slightly more positive value than for Bu = 1.00.

Since the total form drag remains nearly constant after a short adjustment,
we calculate a time average total form drag coefficient < C

D
Tot
Form

> for all the
simulations. We decide to start from τ = 4.32 in order to exclude the tran-
sient adjustment period. In Fig. 12 the averaged total form drag coefficient
< C

D
Tot
Form

> is reported on a semi-logarithmic plot in function of the Burger
number and for different slopes. If we start the analysis with the α = 1 runs
(blue crosses), we can see how the total amount of energy extracted from the
large scale flow is clearly a function of the stratification. On a semi-logarithmic
plot, such an increase is almost linear for small and intermediate Burger num-
bers, while it seems to slightly flatten out for higher Bu. The amount of
energy extracted in the strongly stratified cases is much larger. For example,
the total form drag coefficients for Bu = 6.48 is ≈ 1.75, i.e. almost seven
times bigger than the Bu = 0.05 case (≈ 0.25). The same trend is found for
different slopes: the total form drag always increases with Bu, for constant
slopes. A general tendency to have flatter curves for high values of Bu can
also be observed for gentler slope cases. However, the same coefficients are
also systematically higher for decreasing slopes. This happens for all Bu and
represents a surprising result, since the increase in drag moving toward gentler
slopes is comparable to the one due to stronger stratification. For Bu = 0.05,
for example, the total form drag coefficient for the α = 0.005 case is ≈ 2, i.e.
eight times bigger than for the α = 1 case.
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Fig. 12. Total Drag coefficients as a function of Bu and α. Symbols refer to experi-
ments and dashed lines are from equation (2). Note that the x-axis is logarithmic.

In order to derive a function able to parameterize the loss of momentum due to
unresolved cape-like features in future coarse simulations, we fit empirically the
dependency of the averaged total form drag coefficient on the Burger number
and on the slope α. For this purpose, the following second order logarithmic
polynomial is proposed:

< C
D

Tot
Form

> (Bu, α) = c2(α) log2(Bu) + c1(α) log(Bu) + c0(α) , (2)

where, if m = 1/100 and q = 1.5, the slope dependent constants are defined
as:

c0(α) =
m

α
+ q ,

c1(α) = −2c2 ,

c2(α) = −
∣∣∣∣1− 2α

3

∣∣∣∣ .
In Fig. 12 we graph with dashed lines the curves obtained using equation (2) for
different Burger numbers and slopes. Fig. 12 and equation (2) empirically show
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that the coastal flow experiences a larger drag for more stratified flows over
gentler obstacles, but they do not explain what are the physical mechanisms
behind this behavior. In particular we have to understand the reasons for:

• the oscillating antisymmetric patterns for external and internal form drags;
• the increase of the form drag for higher Bu, no matter what slope is con-

sidered;
• the increase of the form drag for gentler slopes, either for small or high Bu.

Let us consider five different quantities defined as

I(x, y, t) =

pint(x, y, t)− pint(x, y, t = 0) if ∂ b
∂x
6= 0,

0 if ∂ b
∂x

= 0,
(3)

E(x, y, t) =

ρ0 g η(x, y, t) if ∂ b
∂x
6= 0,

0 if ∂ b
∂x

= 0,
(4)

S
I
(y, t) =

y2 − y1

ρ0U2Aprojfront

∫ x2

x1

−pint(x, y, t)
∂ b

∂x
dx , (5)

S
E

(y, t) =
y2 − y1

ρ0U2Aprojfront

∫ x2

x1

−ρ0 g η(x, y, t)
∂ b

∂x
dx , (6)

S
T
(y, t) = S

I
(y, t) + S

E
(y, t) . (7)

The quantity I is the internal pressure field on the sea bottom subtracted at
any time by the initial pressure and masked for null slope regions. Because of
the along-stream symmetry of the obstacle in our simulations, the simultane-
ous presence of upstream positive and downstream negative anomalies is an
indication of higher positive values for the internal form drag. The quantity
E, instead, just masks the sea surface heights for null slope grid points and
the differences across the obstacle of this quantity lead to different values for
the external form drag. This difference reflects the variations of the sea surface
for different mechanisms including the presence of different eddies in the lee
of the cape. The quantities S

I
and S

E
sum up all the along-shore contribu-

tions to the internal and external form drag coefficients, respectively. S
T

is
just their net. They indicate where C

D
Int
Form

and C
D
Ext
Form

assume high values in
the cross-stream direction. Looking at I, E, S

T
, S

I
and S

E
, we can basically

establish where the highest contributions to the total, internal and external
form drags take place.

Fig. 13 shows the plan view of I and E and the integrated quantities S
T

(black thin line), S
I

(red line) and S
E

(blue line) for the same simulations
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a) Bu = 0.05

Pa Pa

b) Bu = 1.00

Pa Pa

c) Bu = 6.48

Pa Pa

Fig. 13. Left panels: plan view of the quantity I. Center panels: the non-dimensional
along-shore integrated quantities ST (black thin line), SI (red line) and SE (blue
line) as a function of the across-shore direction. Right panels: plan view of the
quantity E. In all the plots α = 0.01, τ = 9.936 and the dash-dotted line indicates
where the slope ends.

of Fig. 11, i.e. for α = 0.01 and for different Bu. In all the plots τ = 9.936
and the quantities reflect the situation of the vorticity fields shown in Fig.
6. Since we already know that the total form drag remains almost constant
in time, the situation pictured in Fig. 13 can provide useful indications for
the whole simulated time. The increase of the total form drag for higher Bu
when α is kept constant reflects the role of stratification in enhancing hori-
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zontal movements and in favoring flow separation. When no separation occurs
(Fig. 13a), both the internal pressure and the sea surface fields remain almost
symmetric across the obstacle and the total form drag is positive but small.
For increasing Bu (Fig. 13b), the separation process represents the common
physical phenomenon leading to two diametrically opposite effects. It elevates
the sea surface and depresses the isopycnals in the lee of the cape. This explain
the clear antisymmetric temporal trends for internal and external drags. The
level of the total drag is decided by the net of the two. When Bu = 6.48, the
separation process is stronger and the drags are larger in magnitude but still
oppositely directed. The net drag just increases slightly. This general scenario
is complicated by the simultaneous surface eddy shedding regime at surface.
When surface cyclones are formed (Fig. 13b), the sea surface locally depresses
and the external form drag is less negative. Meanwhile the internal pressure
difference and the internal form drag decrease. Viceversa for surface anticy-
clones. The eddies shedding at the surface are therefore responsible for the
oscillations in the drag observed in time in Fig. 11b and 11c.

We now investigate the mechanism behind the increasing drag with gentler
slopes. Since the separation process takes places also at intermediate or high
Bu, it is likely that an explanation similar to the previous case can be found.
Indeed, negative internal pressure areas appear downstream the obstacle and
gradually increase in size for the gentler slope cases (not shown). Their pref-
erential orientation is parallel to the obstacle baseline as before. We already
know from the previous paragraph that in gentler slope cases larger eddies form
and they are proportionally more in contact with the bottom than for steeper
obstacles. Boundary layer mixing is therefore larger for decreasing slopes and
the presence of lighter waters is responsible for the negative pressure anomalies
downstream of the cape.

We still need to explain the mechanisms behind the increasing drag with
gentler slopes for low Bu. In these cases, separation is not observed and the
previous arguments do not work. Since all the simulations run at Bu = 0.05
reach quickly a steady state, the situation depicted in the following figures for
τ = 9.936 is representative of the whole simulation. Fig. 14 shows that negative
internal pressure anomalies located in the area closer to the shore become
gradually more important for gentler slope cases and are responsible for the
increase of the internal form drag. Note that their preferential orientation is
perpendicular to the obstacle baseline and not parallel as before. At the same
time, a lee depression in the surface height located in the near-shore lee of
the cape is responsible for the increase of the external form drag. Contrarily
to what happens for larger Bu, the external form drag is now positive and it
sums up with the internal for larger total drags values. In the last plot S

T
is

so big as to be off-scale.

In order to find a phenomenon able to explain the simultaneous appearance
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a) α = 1

Pa Pa

b) α = 0.1

Pa Pa

c) α = 0.02

Pa Pa

d) α = 0.01

Pa Pa

e) α = 0.005

Pa Pa

Fig. 14. As in Fig. 13 but for Bu = 0.05 and different α.
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a) τ = 0

b) τ = 9.936

Fig. 15. Three-dimensional close up of the salinity field at different times for the
case when Bu = 0.05 and α = 0.005.
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a) α = 1

b) α = 0.1

c) α = 0.02

d) α = 0.01

e) α = 0.005

Fig. 16. Plan views of the local internal Froude numbers for the simulations with
Bu = 0.05 and different α. In all the plots τ = 9.936 and the dotted line indicates
where the slope ends.
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of lighter water and surface depression in the lee of the cape, we also plot a
three-dimensional view of the salinity field in the α = 0.005 case (Fig. 15). The
initial condition is symmetric across the cape and does not result in a drag
(Fig. 15a). However, if we look at the same field later on, the situation changes
drastically. Near the coastline downstream of the cape, saltier waters are not
present anymore. It is evident that the presence of lighter waters is linked to
the increase in the ridge height moving toward the coast. Saltier waters are
still retained offshore when the obstacle height is small but they gradually
disappear close to the coast for increasing obstacle heights (Fig. 15b).

All the evidence collected so far suggests that the low Bu cases are dominated
by hydraulic processes whose importance increases for gentler slopes. In order
to confirm this hypothesis, the local internal Froude number is calculated in
each grid-point according to the relation

Fr
I
(x, y, t) =

|u(x, y, t)|√
g′(x, y, t) h(x, y, t)

, (8)

where u is the along-shore component of the vertically averaged velocity, h
is the depth and g′ = g(ρbot − ρsrf )/ρ0 is the reduced gravity in each grid-
point. ρbot and ρsrf are the density values at the bottom and at the surface,
respectively. Plan views of Fr

I
for all the Bu = 0.05 cases are shown in Fig.

16 for different slopes. Fr
I

reaches the maximum in all the simulations at
the crest of the ridge. Note that for gentler slope cases, the background flow
increases by construction in order to keep constant the Rossby number (see
Table 3). As a result, the extension of the area where the flow is supercritical
increases as well. Supercritical conditions lead to a larger downstream mixing
associated with hydraulic jumps. This mixing, the deepening of the sea surface
height and of the isopycnals, all result in less bottom pressure on the lee-side
of the cape and in a larger form drag.

4 Summary and concluding remarks

We present a numerical study aimed to assess under which conditions different
flow regimes occur behind a costal cape. We initially model after the labora-
tory experiments by Boyer and Tao (1987). As in the laboratory, if we keep
constant the Rossby number, we observe that the regimes strongly depend on
the Burger number Bu. For strongly stratified waters, Bu increases and hori-
zontal movements are favored with respect to vertical ones. As a consequence,
eddy separation is more likely to occur than lee wave generation and we pass
from a fully-attached regime, to tip eddies, followed by a lee eddy shedding
regime. For high Bu the lee shedding become stronger and more evident. The
eddy-attached regime observed by Boyer and Tao (1987) for intermediate Bu
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is not reproduced in our simulations. We raise the possibility that this regime
could be a very transient one, limited to a small parameter range between the
fully-attached and the eddy shedding. Its relative importance in the laboratory
experiments can be attributed to the smaller Reynolds numbers used.

The extension of the case study by Boyer and Tao (1987) to gentler and more
realistic slopes reveals the competitive role of bottom friction. Bottom friction
quickly damps and spins down turbulent structures while stratification tends
to increase the two-dimensionality of the flow and to confine the damping role
just to the deeper layers. For decreasing Ref and slopes, the surface lee eddy
shedding regime is gradually reached at higher Bu. For the gentler slope cases
and for intermediate Bu, the regime is replaced by just tip eddies. At the
bottom, the strong lee eddy shedding is weakened for intermediate slope. For
gentler slope cases, bottom friction becomes so important as to slow down
the eddy formation. It can spin down the first eddy forming in the lee (eddy-
attached regime) or to inhibit completely its formation. In the latter case, only
tip eddies can be observed. Flow diagram regimes summarizing these results
are presented. Finally, when the lee eddy shedding regime is established, the
Strouhal number is shown to decrease with the Burger number.

Even if bottom friction plays a key role in setting up the flow regimes behind
the cape, the quantification of the form drag coefficients in all the simulations
shows that these latter are at least O(10−1), i.e. 100 times bigger than the skin
drag ones. This result is consistent with previous works recognizing the form
drag as the principal mechanism for the loss of momentum in a coastal flow
(Moum and Nash, 2000; MacCready and Pawlak, 2001; Klymak and Gregg,
2004). However, it should be noted that the ratio of form drag to skin friction
scales somewhat as the ratio of the relative drag coefficients multiplied by the
aspect ratio. The total form drag therefore is almost 20 times larger than skin
friction for α = 1, but of the same order of magnitude for α = 0.005.

In order to understand which physical processes are responsible of the form
drag values, we tell apart the two different contributions due to sea surface
anomalies and to isopycnal deformations. The internal and external form drag
coefficients are calculated separately and then summed up. We found that
in weakly stratified non-eddy regimes, the internal and external form drags
are due to internal waves and both are positive. When the flow is subcritical
(steep cases), their values are small, but in the presence of supercritical flows
with hydraulic jumps (gentle cases), the downstream mixing, the deepening
of the isopycnals and of the sea surface are so substantial as to result in
larger drag values. When the stratification increases, the external form drag
is positive and it opposes the deceleration of the flow. This is due to the
predominant presence of positive sea surface anomalies associated with the
separation process behind the cape. The respective internal structure, however,
leads to the opposite effect for the internal pressure at the bottom. As a result,
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the internal form drag shows an antisymmetric temporal trend relative to the
external drag, and it is able to overcome the latter. The increasing tendency
for flow separation and eddy generation for higher Bu and gentler slopes sets
up the mean level drag values and leads to larger form drag coefficients. The
surface eddy shedding is merely responsible for the oscillating time pattern
around this level.

The results presented, therefore, provide useful insights for future and more
realistic modeling. Here we underline how the form drag strongly depends on
the flow regimes and on the physical processes established in different condi-
tions. Moreover, the scientific literature already recognizes the importance of
the form drag in explaining strong additional dissipation in coastal areas rich
with topographic features (Lavelle et al., 1988; Foreman et al., 1995; Edwards
et al., 2004). In order to simulate the effects of unresolved capes in future
simulations, we put forth an empirical fit to the form drag coefficient in the
Bu − α space based on the numerical experiments. The proposed function
can be employed as a parametrization of form drag associated with flows past
unresolved capes in coarse resolution simulations.

This study has also implications for the transport of pollutants, sediments and
biological substances. The results indicate that larger particle trapping by the
eddies and consequent dispersion when they shed, are phenomena likely to
occur for steeper capes and in summertime, when waters are less affected by
bottom friction and more stratified. At the same time, for the gentler slope
cases, this study shows that horizontal dispersion at the bottom is strongly
reduced when the eddy-attached regime occurs. If a pollutant source is located
at depth in the lee of the cape (e.g. sewage pipes), these results suggest that
anoxic conditions are more likely to occur.

The results here presented are limited to the Ro = 0.06 case. The mechanism
for the vorticity generation is not assessed in this study and the approach
followed in Signell and Geyer (1991) and in Dong and McWilliams (2007)
looks promising. More work is needed to assess this point and the sensitivity
to the Rossby number. Moreover, the conclusions of the study are strongly
related to the geometry of the cape. Its horizontal dimension, its slope and
the shape of the submerged ridge are shown to influence the results throughout
the paper. The actual generalization of the phenomena here described is not
yet assessed at this stage. There are many effects that can contribute to alter
the flow dynamics and the form drag, such as the variability of the incoming
current (Aiken et al., 2002) or the direction and the strength of a blowing wind
(Winant, 2006). Further investigations in terms of both numerical modeling
and field measurements are necessary to assess all these points.
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A Classification of flow regimes

The time evolution of the ratio KE/KE0 can be used to classify the different
flow regimes in the numerical runs.

Tables A.1 and A.2 collect the trend types and the temporal standard devia-
tions σ for each simulation at surface and at the bottom, respectively. For the
calculation of σ, we start from τ = 4.32 to exclude the initial transient adjust-
ment period. The flow regimes are assigned according to the type of trend and
the value of σ. The type of trend is looked first. If it is an oscillating regime,
the value of the standard deviation is considered. Specifically:

• if σ ≤ 3× 10−2 7→ Tip eddies regime;
• if 3× 10−2 < σ ≤ 1× 10−1 7→ Lee eddy shedding regime;
• if σ > 1× 10−1 7→ Strong lee eddy shedding regime.

If it is a decaying trend, a second decision is taken based on σ. If σ > 1×10−1

the strong energetic shedding is just weakened, while if σ ≤ 1 × 10−1, an
eddy-attached regime is assigned. Finally, if it is a flat and steady trend, a
fully-attached regime is assigned.

The information contained in Tables A.1 and A.2 are displayed in the already
proposed Fig. 8.
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Surface

Exp. Ref (α) Bu Trend σ Regime

2 208 (1) 0.05 Steady 3.50× 10−3 Fully-attached

3 208 (1) 0.10 Oscillating 7.00× 10−3 Tip eddies

4 208 (1) 0.30 Oscillating 1.87× 10−2 Tip eddies

5 208 (1) 0.50 Oscillating 7.35× 10−2 Eddy shedding

6 208 (1) 0.70 Oscillating 6.67× 10−2 Eddy shedding

7 208 (1) 1.00 Oscillating 8.78× 10−2 Eddy shedding

8 208 (1) 3.00 Oscillating 1.54× 10−1 Strong eddy shedding

9 208 (1) 6.48 Oscillating 1.30× 10−1 Strong eddy shedding

10 21 (0.1) 0.05 Steady 2.22× 10−3 Fully-attached

11 21 (0.1) 1.00 Oscillating 6.17× 10−2 Eddy shedding

12 21 (0.1) 6.48 Oscillating 1.65× 10−1 Strong eddy shedding

13 4 (0.02) 0.05 Steady 3.61× 10−4 Fully-attached

14 4 (0.02) 1.00 Oscillating 7.20× 10−2 Eddy shedding

15 4 (0.02) 6.48 Oscillating 2.61× 10−1 Strong eddy shedding

16 2 (0.01) 0.05 Steady 1.85× 10−4 Fully-attached

17 2 (0.01) 0.10 Steady 9.02× 10−5 Fully-attached

18 2 (0.01) 0.30 Oscillating 1.29× 10−2 Tip eddies

19 2 (0.01) 0.50 Oscillating 1.47× 10−2 Tip eddies

20 2 (0.01) 1.00 Oscillating 4.89× 10−2 Eddy shedding

21 2 (0.01) 6.48 Oscillating 1.47× 10−1 Strong eddy shedding

22 1 (0.005) 0.05 Steady 1.58× 10−4 Fully-attached

23 1 (0.005) 0.50 Oscillating 6.85× 10−3 Tip eddies

24 1 (0.005) 1.00 Oscillating 3.92× 10−2 Eddy shedding

Table A.1
Classification of surface flow regimes for all the simulations.
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Bottom

Exp. Ref (α) Bu Trend σ Regime

2 208 (1) 0.05 Steady 4.49× 10−3 Fully-attached

3 208 (1) 0.10 Oscillating 8.75× 10−3 Tip eddies

4 208 (1) 0.30 Oscillating 5.19× 10−2 Eddy shedding

5 208 (1) 0.50 Oscillating 1.11× 10−1 Strong eddy shedding

6 208 (1) 0.70 Oscillating 1.90× 10−1 Strong eddy shedding

7 208 (1) 1.00 Oscillating 2.15× 10−1 Strong eddy shedding

8 208 (1) 3.00 Oscillating 4.71× 10−1 Strong eddy shedding

9 208 (1) 6.48 Oscillating 5.11× 10−1 Strong eddy shedding

10 21 (0.1) 0.05 Steady 3.34× 10−3 Fully-attached

11 21 (0.1) 1.00 Decaying 1.63× 10−1 Eddy shedding

12 21 (0.1) 6.48 Decaying 2.86× 10−1 Eddy shedding

13 4 (0.02) 0.05 Steady 1.03× 10−4 Fully-attached

14 4 (0.02) 1.00 Decaying 3.20× 10−2 Eddy-attached

15 4 (0.02) 6.48 Decaying 5.91× 10−2 Eddy-attached

16 2 (0.01) 0.05 Steady 8.10× 10−5 Fully-attached

17 2 (0.01) 0.10 Steady 1.62× 10−4 Fully-attached

18 2 (0.01) 0.30 Oscillating 7.19× 10−3 Tip eddies

19 2 (0.01) 0.50 Oscillating 1.48× 10−2 Tip eddies

20 2 (0.01) 1.00 Oscillating 1.25× 10−2 Tip eddies

21 2 (0.01) 6.48 Decaying 5.83× 10−2 Eddy-attached

22 1 (0.005) 0.05 Steady 4.56× 10−5 Fully-attached

23 1 (0.005) 0.50 Oscillating 3.14× 10−3 Tip eddies

24 1 (0.005) 1.00 Oscillating 6.30× 10−3 Tip eddies

Table A.2
Classification of bottom flow regimes for all the simulations.
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